

 Eagle Mine

 4547 County Road 601

 Champion, MI 49814, USA

 Phone:
 (906) 339-7000

 Fax:
 (906) 339-7005

 www.eaglemine.com

Wednesday, March 15, 2023

Ms. Melanie Humphrey Michigan Department of Environment, Great Lakes, and Energy 1504 W. Washington St. Marquette, MI 49855

Subject: Annual Mining and Reclamation Report, Eagle Mine, LLC Nonferrous Metallic Mineral Mining Permit (MP 01 2010), Humboldt Mill

Dear Ms. Humphrey:

Eagle Mine, LLC has an approved Mining Permit (MP 01 2010) dated February 9, 2010. General Permit Condition F-2 states, "The permittee shall file with the MMU supervisor a Mining and Reclamation Report on or before March 15 of each year, both during milling operations and post closure monitoring as required by Section 324.63213 and R 425.501. The report shall include a description of the status of mining and reclamation operations, an update of the contingency plan, monitoring results from the preceding calendar year, tonnage totals of material mined, and amount of metallic product by weight."

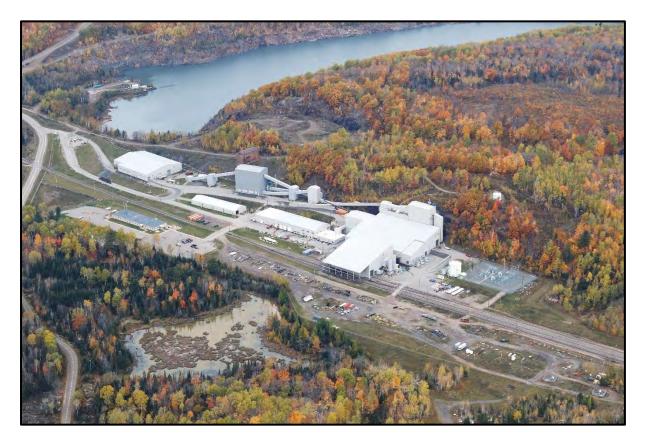
Please find enclosed, the 2022 Annual Mining and Reclamation Report for the Humboldt Mill.

Should you have any questions about this report, please do not hesitate to contact me at 906-203-0301.

Sincerely,

Lauren Cavalieri

Lauren Cavalieri Environmental Advisor


Cc: Humboldt Township

enclosure

2022 Annual Mining and Reclamation Report Humboldt Mill Mine Permit MP 01 2010

March 15, 2023

<u>Contents</u>

1.	Document Preparers and Qualifications1				
2.	Introduction2				
3.	Site Modifications and Amendments2				
4.	Proce	Processing Activities and Data Report			
	4.1 Pr	rocessing Report			
		1.1.1. Tailings	4		
2.	Site V	Water Usage, Treatment, and Discharge	5		
	2.1.	Supply Water Sources and Use	5		
	5.2.	Storm Water Control	6		
	5.3.	Water Treatment Plant Operations and Discharge	6		
	5.4.	Water Balance			
_					
6.		erials Handling			
	6.1.	Fuel Handling	9		
	6.2.	Bulk Chemical Handling and Storage	9		
7.	Moni	itoring Activities	10		
	7.1.	Water Quality Monitoring			
		7.1.1. Quarterly Groundwater Quality Monitoring			
		7.1.2. Quarterly Surface Water Quality Monitoring	15		
	7.2.	Sediment Sampling			
	7.3.	Regional Hydrologic Monitoring			
		7.3.1. Continuous Groundwater Elevations			
		7.3.2. Continuous Surface Water Monitoring			
	7.4.	Cut-Off Wall Effectiveness Review			
		7.4.1. Water Quality 7.4.2. Water Levels			
	7.5.	Biological Monitoring			
	7.5.	7.5.1. Flora and Fauna Report			
		7.5.2. Threatened and Endangered Species			
		7.5.3. Fisheries and Macro Invertebrate Report			
		7.5.4. Fish Tissue Survey	30		
		7.6.1 Soil Erosion Control Measures			
		7.6.2. Impermeable Surface Inspections			
		7.6.3. Tailings Line Inspection			
		7.6.4. Geochemistry Program			
8.	Recla	amation Activities	38		
9.	Conti	ingency Plan Update	39		
10.	-	ncial Assurance Update	40		
10.					
11.	Orgai	nizational Information	40		

Appendices

Appendix A	Humboldt Mill Site Map
Appendix B	Bathymetry Surveys
Appendix C	Storm Water Drainage Map
Appendix D	Water Balance Diagrams
Appendix E	Groundwater Monitoring Well Location Map
Appendix F	Groundwater Monitoring Well Results and Benchmark Summary Table
Appendix G	Groundwater Trend Analysis Summary
Appendix H	Surface Water Monitoring Location Map
Appendix I	Surface Water Results and Benchmark Summary Table
Appendix J	Surface Water Trend Analysis Summary
Appendix K	Sediment Monitoring Results
Appendix L	Groundwater Hydrographs
Appendix M	Cut-off Wall Monitoring Well Tabular Summary
Appendix N	Flora and Fauna Survey Location Maps
Appendix O	Aquatic Survey Location Maps
Appendix P	Contingency Plan Update
Appendix Q	Organizational Information

Acronyms and Abbreviations

AEM	Advanced Ecological Management
AMP	adaptive management plan
BMPs	best management practices
COSA	Coarse Ore Storage Area
CLO	Concentrate Load-Out Facility
CN	Canadian National
COI	Constituents of Interest
DO	dissolved oxygen
Eagle	Eagle Mine LLC
EGLE	Michigan Department of the Environment, Great Lakes & Energy
EMT	Emergency Medical Technician
gpm	gallons per minute
HDPE	high-density polyethylene
HTDF	Humboldt Tailings Disposal Facility
HWMB	Humboldt Wetland Mitigation Bank
MER	Middle Branch Escanaba River
MDNR	Michigan Department of Natural Resources
MG	million gallons
MRR	Mining and Reclamation Report
μg/L	micrograms per liter
mg/L	milligrams per liter
MNFI	Michigan Natural Features Inventory
MSL	mean sea level
NPDES	National Pollution Discharge Elimination System
NREPA	Natural Resources & Environmental Protection Act
NTU	Nephelometric Turbidity Units
ORP	Oxidation Reduction Potential
РРВ	parts per billion
Q1	Quarter 1
QAL	quaternary unconsolidated formation
QAPP	Quality Assurance Project Plan
SESC	Soil Erosion and Sedimentation Control
SU	standard units
SWPPP	Storm water Pollution Prevention Plan
t	metric ton (tonne)
TDS	total dissolved solids
TSS	total suspended solids
TIE	Toxicity Identification Evaluation
UFB	upper fractured bedrock
WBR	Black River

WTP	Water Treatment Plant
WRD	Water Resources Division
ZLD	Zero Liquid Discharge

1. Document Preparers and Qualifications

This Mining and Reclamation Report (MRR) was prepared by the Eagle Mine-Humboldt Mill Environmental Department and incorporates information prepared by other qualified professionals. Table 1 provides a listing of the individuals and organizations who were responsible for the preparation of this MRR as well as those who contributed information for inclusion in the report.

Organization	Name	Title			
Individuals responsible for the preparation of the report					
Eagle Mine LLC	Jennifer Nutini, PE	Environmental Superintendent			
Eagle Mine LLC	David Bertucci	Environmental Compliance Supervisor			
Eagle Mine LLC	Lauren Cavalieri	Environmental Advisor			
Report contributors					
Advanced Ecological Management LLC	Doug Workman, PhD	Aquatic Scientist			
Barr Engineering	Chris Miron, PE	Senior Chemical Engineer			
Barr Engineering	Denise Levitan, Ph.D.,	Geochemist			
	PG				
Barr Engineering	Katy Lindstrom, PE	Groundwater Hydrogeologist			
Barr Engineering	Matt MacGregor	Wetland Scientist/Biologist			
Barr Engineering	Mehgan Blair, PG	Geochemist			
Eagle Mine LLC	Brooke Routhier, PE	Water Services Superintendent			
Eagle Mine LLC	Carlye Hares	HSE Data Specialist			
Eagle Mine LLC	Hugo Staton	Mill Operations Supervisor			
Eagle Mine LLC	Karen Carlson	HSE Administrative			
Eagle Mine LLC	Miguel Valenzuela	Metallurgist			
Eagle Mine LLC	Steve Daavettila	Metallurgist			
Golder Associates	Devin Castendyk, PhD	Geochemist			
Golder Associates	Erica Evans, MSc, GIT	Geochemist			
TriMedia Environmental & Engineering	Ryan Whaley	Senior Scientist			

 Table 1. Document Preparation – List of Contributors

2. Introduction

Eagle Mine began the remediation and reconstruction of the Humboldt Mill located in Humboldt Township in October 2008. The processing ore from the Eagle Mine began in September 2014. Due to the commencement of milling operations, Eagle Mine is required per Part 632 to submit an annual Mining and Reclamation Report (MMR) as detailed in R 425.501.

The MRR is required to provide a description of mining and reclamation activities, an updated contingency plan, monitoring results, tonnage of material processed, and a list of incident reports that created or may create a threat to the environment, natural resources, or public health and safety at the Eagle Mine Site. In addition, this MRR will also memorialize the decisions and/or modifications that have been approved throughout the process.

3. Site Modifications and Amendments

Two notifications were submitted in 2022, one of which was a notification requesting an adjustment to the sampling frequency of two groundwater monitoring wells; the other notification was for the construction of a Zero Liquid Discharge (ZLD) Treatment Plant Building.

Proper notifications were submitted and approved by the Michigan Department of Environment, Great Lakes & Energy (EGLE).

- In February of 2022, Eagle submitted a notification explaining the slow recharge rate of two groundwater monitoring wells (HW-1L and HW-1U LLA) due to slow moving groundwater. Because of this slow recharge rate, consultants reviewing the data suspected that the water collected during the quarterly sampling could be the same water quarter-to-quarter, therefore the sample results would not be representative of water quality changes over time. This was determined using EPA guidance in calculating an autocorrelation function for the wells. By sampling these wells once per year, instead of quarterly, the data collected will be statistically independent from previous samplings. The sampling frequency will be evaluated and revisited after the Q3 2023 sampling.
- In June of 2022, Eagle submitted a notification about the construction of the ZLD Treatment Plant Building. The ZLD Building will have office/restroom facilities and new process equipment specifically designed to remove salts from the Humboldt Tailings Disposal Facility (HTDF), a necessary element of the facility's reclamation plan. Construction began in the Spring of 2022, after initial earthwork to remove unsuitable foundation soil was completed in November 2021. The building shell was completed in Q1 2023.

Pictures of the ZLD Treatment Plant building construction.

Table 3.	Submittals	and Approval	s Required Und	der Part 632
10010 01	000111100010		o negan ca on	

Date	Description	Approval
3/15/22	2021 Annual Mining and Reclamation Report	N/A
2/23/22	Notification Request for Changes to Well Sampling Frequency	3/22/22
5/17/22	Q1 groundwater and surface water monitoring data	N/A
6/16/22	Notification of Construction of Zero Liquid Discharge Treatment Building	N/A
7/20/22	Q2 groundwater and surface water monitoring data	N/A
11/03/22	Q3 groundwater and surface water monitoring data	N/A
2/6/2023	Q4 groundwater and surface water monitoring data	N/A

Table 4. Non-Routine Submittals and Approvals Required Under Other Permits

Date	Description	Approval
1/04/22	Submitted the revised Storm Water Pollution Prevention Plan (SWPPP)	N/A
2/17/22	SARA Title III Tier II Report	N/A
3/04/22	Notification of Humboldt Mill Unintentional Discharges	N/A
3/21/22	Notification of cyanide detection in WTP Effluent	NA
	*Note: Lab re-analysis and QA/QC review indicated that lab contamination	
	was present and the re-analyzed sample was non-detect for cyanide.	
3/23/22	Submitted Michigan Air Emissions Reporting System (MARES) Report	N/A
8/24/22	8/24/22 Notification of Humboldt Mill WTP CBOD, 5-day monthly average	
	concentration	
8/29/22	Notification of Humboldt Mill Unintentional Discharge	
9/29/22	Notification of Humboldt Mill WTP CBOD, 5-day monthly average	N/A
	concentration	
10/12/22	United States EPA DMR-QA 41 Study	N/A
10/18/22	Notification of Humboldt Mill WTP CBOD, 5-day monthly average	N/A
	concentration	
12/19/22	Notification of Humboldt Mill WTP CBOD, 5-day monthly average	N/A
	concentration	

4. Processing Activities and Data Report

As of September 23, 2014, the mill began operating to produce concentrate. The commencement of milling activities initiated all monitoring programs per the Part 632 Mining Permit. A description of the 2022 monitoring activities can be found in Section 7 of this report.

4.1 Processing Report

In 2022, 720,930 wet metric tonnes of ore were transported from the Eagle Mine to the Humboldt Mill by over the road haul trucks. Table 4.1 below summarizes the dry tonnes of ore crushed and milled and the total volume of nickel and copper concentrate produced in 2022.

In 2022, approximately 41,889 dry tonnes of copper and 139,733 dry tonnes of nickel were shipped off-site via rail. Mineral Range manages rail shipments from the Humboldt Mill to the Ishpeming Rail Yard. From that point Canadian National (CN), and to a lesser extent, Canadian Pacific Rail and Ontario Northland Rail transports the material to its final destination.

Month	Ore Crushed (dry tonnes)	Ore Milled (dry tonnes)	Copper Concentrate Produced (dry tonnes)	Nickel Concentrate Produced (dry tonnes)
January	59,027	59,228	3,385	8,862
February	55,076	54,249	3,689	10,742
March	65,439	65,510	4,866	13,362
April	68,141	67,999	4,908	13,143
May	61,484	61,005	3,851	13,072
June	52,703	52,733	3,228	11,922
July	61,416	62,271	4,094	12,560
August	62,076	60,923	3,527	12,379
September	62,792	63,941	2,639	10,455
October	58,760	58,294	2,904	11,147
November	51,459	53,236	2,680	11,140
December	59,284	58,317	2,118	10,949
2022 Annual Total	717,657	717,706	41,889	139,733

Table 4.1 Volume of Ore Crushed, Milled, and Concentrate Produced in 2022

Source: Mill Operations Year-End Reconciled

1.1.1. Tailings

Tailings are the waste material that is generated when processing ore. At the Humboldt Mill, tailings are sub-aqueously disposed in the Humboldt Tailings Disposal Facility (HTDF) which is an industry best practice to minimize the risk of oxidation of sulfide-bearing material. The tailings slurry is composed of finely ground waste rock, water, and process effluents and is deposited in the HTDF via a double-walled high-density polyethylene (HDPE) pipeline. At the shoreline of the HTDF, the pipeline splits and the tailings can be routed to one of the subaqueous outfalls located within the HTDF. The use of multiple outfalls allows for better control of the depth of tailings in an area and optimizes the storage volume that is available.

Tailings were deposited at pit floor locations in the winter months (December-May) and in the summer months, tailings were deposited using a barge system at elevated positions between 70 feet and 100 feet deep. These deposition points strategically maintained a ridge across the pit effectively dividing the HTDF into north and south basins. This was a part of the tailings deposition plan and

allows for the intentional isolation of water on either side of the ridge for water treatment purposes. In November 2022, tailings deposition returned to a pit floor deposition point in the northern portion of the HTDF where it will remain until Spring 2023. In 2022, approximately 195 million gallons (MG) of tailings slurry was sub-aqueously disposed of in the HTDF.

Following permit condition, F-7, an annual bathymetry survey is required to be conducted to accurately monitor tailings placement and calculate changes in HTDF water storage. However, to better understand the settling characteristics of the tailings, two surveys were completed in 2022. The surveys were conducted in May and October and focused on the entire HTDF as tailings had been dispersed to multiple areas. Copies of the bathymetry surveys are available in Appendix B. Based on October 2022 bathymetry survey results, the maximum tailings peak measured at 1,463 MSL with most of the tailings stored below elevation 1,445 MSL. The tailings elevations in the HTDF do not exceed the maximum allowed tailings elevation of 1515 MSL.

Photo of the HTDF, June 2021

The Metallic Minerals Lease (No. M-00602) requires the lessee to furnish a mill waste reject report on an annual basis. In 2022, 423 dry metric tonnes of copper and 2,281 dry metric tonnes of nickel were deposited in the HTDF entrained with the tailings.

2. Site Water Usage, Treatment, and Discharge

The site water balance is composed of well water, process water, precipitation, groundwater infiltration, and storm water runoff. Except for potable water, which is discharged to the onsite septic system, all of the other water sources are captured in the HTDF and are treated by the WTP before being discharged.

2.1. Supply Water Sources and Use

Three separate sources supply water to the mill site to support various operational activities. These sources include the potable well, industrial well, and reclaim water from the HTDF. The following summary of average water use from each source has been compiled using the detailed water use logs that are maintained on-site.

The domestic well is mainly used to supply potable water to the facility. In 2022, approximately 0.94 MG of water was withdrawn from the domestic water well which is an increase from the 2021 total of 0.75 MG. The increase in domestic water usage onsite in 2022 can likely be attributed to more employees returning to work onsite following several years of telecommuting due to COVID-19. The domestic water system filter media was replaced which increased water consumption in April to

backwash and condition the media, and the main domestic water supply tank was also drained in June for cleaning which added to water use in 2022.

The industrial well is only used to keep the fire water tank full, limiting consumption from this source. In 2022, approximately 0.96 MG of water was used from the industrial well. Industrial water use increased from the 0.28 MG withdrawn in 2021. The water use increase is due to planned operational downs for Mill equipment maintenance which require additional industrial water to start processes back up. In addition, a pressure relief valve on a pump malfunctioned, which in turn caused higher water consumption. The additional water drained to the HTDF through the storm drain system.

The third source of water at the mill site is the reclaimed water which is pumped from the HTDF. This water is used throughout the process. Any water that is not consumed is recycled back to the HTDF via tailings. Where possible, reclaim water usage in the mill has been replaced with internally recycled process water and the volume of water sent to the HTDF has been reduced to match the reduction in reclaim water brought into the mill. In 2022, approximately 167 MG of reclaimed water was pumped from the HTDF for use in processing ore. Apart from approximately 5.3 MG of water that was contained in the concentrate and shipped offsite, the remainder of the water was recycled back to the HTDF for eventual reuse or treatment by the WTP.

5.2. Storm Water Control

A site grading plan was developed to keep all storm water on site and to direct run-off to one of two locations: the HTDF or an onsite storm water retention basin. Most of the site grading, paving, and curbing were previously completed to direct water to the series of catch basins that were installed along the length of the main facility from the rail spur to the security building. These catch basins direct storm water from the main mill facility to the HTDF. Water that falls south of the main site access road is directed to the storm water retention basin via a drainage ditch or series of catch basins in the administrative building parking lot. A copy of the Humboldt Mill Storm Water Drainage map is included in Appendix C.

Storm water control at the Humboldt Mill is managed under NPDES permit (MI00058649) and per Part I.B of the permit, a storm water pollution prevention plan (SWPPP) has been developed. The SWPPP describes the Humboldt Mill site and its operations, identifies potential sources of storm water pollution at the facility, recommends appropriate best management practices (BMPs) or pollution control measures to reduce the discharge of pollutants in storm water runoff, and provides for periodic inspections of pollution control measures. The plan must be reviewed and updated, if necessary, annually and a written report of the review must be maintained and submitted to EGLE on or before January 10th of each year. The 2022 SWPPP annual review was completed and submitted to the Department on December 29th, 2022. A copy of the plan is available upon request.

5.3. Water Treatment Plant Operations and Discharge

Effluent discharges are regulated under the NPDES permit MI0058649, and analytical results and discharge volume are reported to EGLE monthly through the MiWaters electronic discharge monitoring reporting system. Throughout 2022, Eagle continued discharging treated effluent water to Outfall 004, located at the Escanaba River, which was permitted and constructed in late 2018. Eagle also continued using the Escanaba River intake system to supply water and maintain optimal hydrologic conditions in wetlands adjacent to the Humboldt WTP and within the wetlands north of U.S. Hwy 41 via Outfall 003. Outfalls 001 and 003 were not used to discharge treated effluent during 2022.

In 2022, approximately 303.8 MG of water was treated and discharged from the water treatment plant. Table 5.3 below summarizes the monthly flow rate from each WTP outfall in 2022.

Table 5.3 Volume of Water Discharged in 2022

To accomplish near-term and longer-term operating objectives Eagle continues to evaluate the equipment capacities in the WTP. The agency will be notified appropriately in advance of process changes under the NPDES program permit requirements.

The water treatment process generates one solid waste stream derived from solids in the clarifier, which is primarily composed of aluminum, iron, calcium, sodium, magnesium, and nickel. Waste characterization samples are required by the landfill to accept the material. Samples from the filter press waste stream were collected in January 2022 and sent to ALS Laboratory for analysis. Laboratory results confirmed the waste stream is non-hazardous. In 2022, approximately 285 tons of filter press waste were disposed of at the Marquette County Landfill.

Month	Outfall 001 Volume of WTP Effluent Water Discharged (MG)	Outfall 003 Volume of WTP Effluent Water Discharged (MG)	Volume of Escanaba River Water Recirculated through Outfall 003 (MG)	Outfall 004 Volume of WTP Effluent Water Discharged (MG)
January	0	0	18.0	27.5
February	0	0	17.7	24.8
March	0	0	20.3	25.8
April	0	0	19.5	22.1
May	0	0	18.0	35.3
June	0	0	14.4	15.9
July	0	0	16.5	23.0
August	0	0	17.1	18.4
September	0	0	9.3	24.5
October	0	0	17.4	32.7
November	0	0	18.7	30.3
December	0	0	21.0	23.5
2022 Total	0	0	207.9	303.8

Source = WTP Operators log

5.4. Water Balance

The main components of the water balance are reclaimed water/WTP intake, off-spec WTP water, process water, well water, precipitation, groundwater infiltration, and storm water runoff. Each are captured or otherwise managed in the HTDF and treated by the WTP before being discharged to the Middle Branch of the Escanaba River (Outfall 004). Permit condition F-2 requires that the site water balance be updated quarterly to ensure the water level of the HTDF is managed in a manner that minimizes risk to the environment. The 2022 target operating water elevation of the HTDF was between 1530.5 and 1531.0 ft MSL which is significantly lower than originally planned during the

permitting process. The lower operating level mitigates risks associated with overflow situations and provides excess capacity to manage various operational situations.

Eagle returns off-specification water from the WTP plant in a single line depositing the water in the same area as tailings are being discharged. The off-specification water includes backwash from the UF and RO systems, filter press filtrate and excess RO permeate. This water exhibits a moderate concentration of dissolved solids like that of the tailings. Brine is discharged below the elevation of tailings disposal in an area of the HTDF that has been reserved for brine storage.

Throughout 2022 the region received average to moderate precipitation in the form of rainfall and snowfall. After high HTDF water levels of 1537.64 MSL in October of 2019, the HTDF elevation decreased in 2020. The water level remained at a stable elevation of approximately 1531.3 ft MSL in 2021. The average HTDF elevation in 2022 was 1531.55 ft MSL. In 2023, Eagle will again focus on maintaining the water level with a continued target operating level of 1530.5 to 1531.0 ft MSL.

Eagle continues to use an integrated groundwater, surface water, and water balance model to estimate the water balance based on several years of operational data. The model estimates the water balance for the HTDF and surrounding watershed for both current watershed conditions and those consistent with pre-existing conditions prior to the redevelopment of the Humboldt Mill.

Eagle continued to maintain the water balance to Wetland EE and the downstream wetland systems by discharging water from the Middle Branch of the Escanaba River to Outfall 003. Over the last few years, the pumping system was unable to reach the design flows despite improvement efforts. Although the system was still unable to meet high design flows in 2022, troubleshooting and improvements made in 2022 included:

- Ground checks were made on the flow meters to ensure proper function.
- Inspections of valves and flow meters were conducted to check for blockages. Maintenance cleaned valves and flow meters as needed to remove material that would plug them. Reduced flow through the system continued after cleaning.
- High volume pipeline flush and a system curve was developed.
- On September 13, 2022, Eagle contracted a American Pipeline Solutions to perform Ice Pigging[™] which is an in-line inspection and cleaning technique where an ice slurry is pumped through the piping network to remove unwanted material, sediment, or product. The Ice Pigging[™] cleared some obstructions within the pipeline, though the difference in flows was not significant.
- In 2023 troubleshooting on the pumps and flows will continue. In the Spring of 2023, one river pump will be upgraded to a higher horsepower pump to meet the desired flows.

Outfall 003 is supplied with water year-round.

Despite periodic deviations from the flow model, the wetland hydrology was maintained year-round with no major flooding or drought conditions experienced in the downstream areas. This may indicate that the downgradient wetland mitigation bank and other wetland culvert systems are robust and mature enough to handle a variety of water conditions, which will be useful information to consider for closure planning and design. The wetland response information is continually tracked for the purpose of a closure design of the future passively controlled discharge structure on the HTDF.

Copies of the 2022 quarterly water balance diagrams and HTDF water elevation data are included in Appendix D.

6. Materials Handling

6.1. Fuel Handling

A 3,000-gallon double-walled stationary bulk diesel tank with leak detection located on the east side of the COSA is the only bulk fuel storage on site. The bulk tank is refueled as necessary by an offsite fuel provider.

6.2. Bulk Chemical Handling and Storage

Eagle Mine's goal is to create a culture of environmental awareness throughout the workforce. Therefore, all employees and subcontractors are trained to immediately respond and report any spills that occur. In 2022, the Humboldt Mill had zero reportable spills under the Part 5 Rules of Part 31, Water Resources Protection of NREPA, 1994 PA 451 as amended (Spillage of Oil and Polluting Materials).

The Michigan SARA Title III Program requires the reporting of on-site chemicals being stored above certain threshold quantities. Due to the volume of chemicals stored/used at the site for processing and water treatment, a Tier II Report was submitted in February 2022 via the online Tier II Reporting System to the State Emergency Response Commission (SERC). Copies of the report were also mailed to the Marquette County Local Emergency Planning Committee (LEPC) and Humboldt Township Fire Department.

7. Monitoring Activities

7.1. Water Quality Monitoring

A significant amount of surface water and groundwater quality monitoring is required on the mill site and surrounding areas. The following is a summary of the water quality monitoring activities.

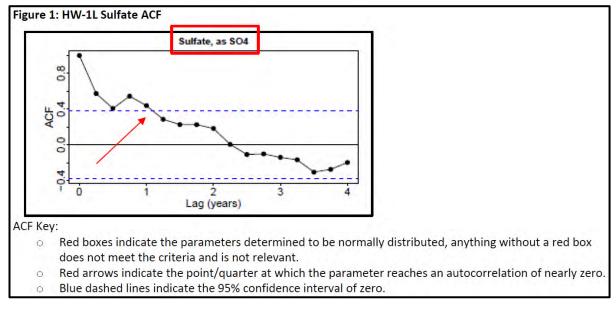
7.1.1. Quarterly Groundwater Quality Monitoring

Groundwater quality is monitored through a network of monitoring wells located inside the perimeter fence line of the mill site. The monitoring wells are classified as either compliance, leachate, facility, or monitoring. Compliance wells are located on the north-side of the cutoff wall, outside of the influence of the HTDF; leachate wells are located on south-side of the cut-off wall and generally represent HTDF water quality (or would likely represent HTDF water quality once the groundwater gradient is established in an outward direction); facility monitoring wells are located downgradient of each operating facility; the remaining monitoring wells are located north of the cut-off wall but are not used to confirm effectiveness of the cut-off wall as the compliance and leachate wells are. A map of the well locations can be found in Appendix E. Four rounds of guarterly sampling were completed in March (Q1), June (Q2), August (Q3), and November (Q4), 2022. The Eagle Mine Permit prescribes both a long parameter list for annual monitoring events (conducted in Q3 2022) and a short list to be used guarterly (Q1, Q2, Q4 2022). Samples were collected in accordance with the Eagle Project Quality Assurance Project Plan and Standard Operating Procedures (North Jackson, 2004a and 2004b) and the results are summarized and compared to benchmarks in the tables found in Appendix F.

Monitoring Locations MW-702 well cluster (left), and MW-706 QAL (right), August 2022

Monitoring Results

Twenty-two monitoring well samples were collected by TriMedia Environmental & Engineering (TriMedia) during the Q2 and Q4 quarterly sampling events, and twenty-four wells were sampled during the Q1 quarterly event and the annual event that took place in Q3 2022. Samples were collected using low-flow sampling techniques, and field parameters (dissolved oxygen (DO), oxidation-reduction potential (ORP), pH, specific conductivity, temperature, turbidity) were collected


and analyzed using a flow-through cell and YSI probe. All samples were shipped overnight to Pace Analytical Services in Grand Rapids, Michigan, for analysis.

On March 22nd, 2022, Eagle's request to adjust the sampling frequency of two bedrock groundwater monitoring wells from quarterly to an annual sampling frequency was approved by the agency. Monitoring wells HW-1L and HW-1U LLA have an adjusted sampling frequency due to low recharge rates which likely leads to data not being statistically independent. The annual sampling event for these wells occurred in Q3 2022. These wells were also sampled in Q1 2022 as Eagle was still awaiting approval from the agency to modify the sampling frequency. This approval will be reevaluated after two annual sampling events.

Per Part 632, R426.406 (6) when a result is greater than a benchmark for two consecutive sampling events at a compliance monitoring location, the permittee is required to notify EGLE and determine the potential source or cause resulting in the deviation from the benchmark. Fluctuations in groundwater elevation, the potential impact by road salt/sand applications, and/or shifts in the redox conditions of groundwater are the likely drivers of the conditions that occurred throughout the year. The following is a summary of the events that occurred in 2022:

- Seventeen of the twenty-four monitoring locations required field filtering for at least one quarter in 2022 due to turbidity levels that exceeded 3 NTU, and therefore the values are reported as dissolved concentrations. The remaining locations/quarters reported turbidity below 3 NTU and are reported as total concentrations. The sample summary denotes whether the sample values are total or dissolved.
- Four of the monitoring locations (MW-702 UFB, MW-703 UFB, HW-1L, and HW-1LLA) are slow • to recharge and are pumped down in advance of sampling to ensure that the sample is representative of the groundwater at the monitoring location. Locations MW-702 UFB and MW-703 UFB take one month to recover while HW-1U LLA takes approximately 3 quarters to fully recover and HW-1L takes approximately four guarters to fully recover due to low recharge rates to the well. The presence of bentonite has also been observed in proximity to the screened interval of monitoring well HW-1U and may also contribute to the slow recharge rate. Samples from these locations follow low-flow sampling procedures (except for HW-1U) after the recharge period. Sample independence is tested following EPA's guidance on autocorrelation functions (ACF). Eagle's consultant reviewed the four wells that Eagle believed to have a slow recharge rate and plotted the normally distributed parameters from each well and determined how many quarters it took for the parameter to reach an autocorrelation of nearly zero. Once the autocorrelation lag rate was determined, the parameter with the longest lag time is used as the recommended number of quarters between sampling events to ensure an independent sample. If we did not ensure enough time between sampling events, the results from these wells would not accurately

characterize the true water quality of the location and would likely be pulling the same water from the well every quarter (causing dependent sample measurements).

- The major cation parameters analyzed (calcium, magnesium, potassium, and sodium) were
 detected at all locations with most of the detections below the calculated benchmarks.
 Among major anion parameters analyzed, bicarbonate alkalinity, sulfate and chloride were
 detected in many of the samples. Concentrations were frequently but not always below the
 calculated benchmarks. Nitrogen species (ammonia, nitrate, and nitrite) were detected more
 irregularly. Carbonate alkalinity, fluoride, and sulfide were rarely detected. A summary of
 wells that have had one or more parameters exceed a benchmark value can be found in
 Appendix F.
- The majority of the metals were listed as non-detect because the value was below the instrument detection limit.
- For several years, Eagle employees have used a gravel roadway from the mill property to the WTP that traverses the cut-off wall and passes by the Fenton's reactor area. This was commonly used by warehouse, maintenance, and WTP employees for activities such as delivering supplies or moving mobile equipment that cannot be driven over the road (such as a man lift). However, to keep that road surface safe for use year-round, the road periodically was treated with sand/salt mixtures. The typical salt used is sodium chloride, containing readily soluble calcium and sulfate, along with trace amounts of soluble magnesium. As an example, one salt product used contains 98% NaCl with 0.81% SO4 and 0.31% Ca. The road salt minerals are designed to dissolve in water, so represent a potentially significant source of these solutes to shallow groundwater and soils in the vicinity of the cut-off wall; in addition to these direct changes, road salts have the potential to affect general nutrient cycling (such as for nitrogen/ammonia) and cation exchange reactions within the affected soil profiles. Changes in these parameters in groundwater measurements are characteristic of the sand/salt application activities taking place nearby causing ion exchange processes to occur in the clays and other minerals in contact with shallow groundwater. Salt-impacted water is denser than fresh water, so it will tend to sink until it reaches an impermeable surface and occupy fractures. As this is a potential confounding factor to interpreting the results in the monitoring water quality in these wells, the road was closed to vehicle traffic for the first time

in the winter of 2020-2021 and again from November 2021 – March 2022 to limit the application of sand/salt. Access to the Fenton's reactor area is still maintained for chemical deliveries and personnel, so some well sets will continue to be influenced by vehicle traffic and sand/salt application, though at a lesser rate than seen in the past. The majority of these parameters are not characteristically related to milling operations. Trend monitoring will continue in 2023.

- Sodium remained elevated at KMW-5R in 2022, a well located near the COSA which is nearby an area that is regularly salted throughout the winter. Rainfall and runoff near the COSA flow locally past the well and infiltrate in a low area approximately 40 feet from the well. This elevated concentration has been consistent since 2018 when benchmark values were established.
- De-icing salt related parameters were elevated at HW-8U. This well is located outside the cut-off wall along the access road where salt is applied throughout the winter for safety and accessibility to the WTP bulk storage area. In Q4 2022, naturally occurring iron remained elevated while manganese returned below benchmark values, indicating local changes in pH and/or redox conditions.
- Salt related parameters remained elevated at MW-701 QAL in Q1 2022, though they 0 were lower than the highly elevated concentrations observed after the 2019 sulfuric acid release. Nitrogen as nitrate increased above benchmark range at MW-701 QAL. De-icing applications can affect the pH of the soil, which can cause an acceleration of the denitrification process, allowing excess nitrogen to leach into groundwater. Chloride and sodium concentrations increased in Q2, then decreasing in the second half of the year while remaining above benchmark values. Sulfate decreased throughout the year at MW-701 QAL while remaining above benchmark values, which may indicate that sulfate from the release is being flushed out more slowly than other solutes due to redox and biological interactions. In Q2 we also experienced a localized snow and stormwater inflow near this location, which could impact groundwater in the short term when meltwater caused erosion of surface soil draining into subsurface large-diameter run-of-mine rock near MW-701 QAL. Overall, the current levels are much lower than they were at their peak concentration following the 2019 sulfuric acid spill and now may reflect mainly salt-related concentrations due to the well series being in an area where sand and salt is required for safe access throughout the winter. In the second half of 2022, bicarbonate alkalinity was above the benchmark for the second consecutive guarter which is likely due to the effects on soil pH from sand/salt use, as well as the stormwater inflow event.
- Nitrogen present as nitrate remained above the benchmark value at MW-703 QAL throughout 2022. The MW-703 wells are located outside of the cut-off wall along the HTDF roadway.
- Chloride rose above benchmark values at MW-704 QAL in Q2 and Q3 2022. The MW-704 well series is located outside the cut-off wall where road salt has been applied in the winter for safety and accessibility and is also near the site of the new ZLD water treatment plant. In the fall of 2021, over 11,000 cubic yards of unsuitable soil (including cut-off wall bentonite mixed soil and other residual fill from the Cliffs-era mining) was removed and replaced with clean imported fill. Foundation work for this

building began in June 2022 and we expect this well set to continue be influenced by local construction activities and future operations activities.

- Seven parameters (pH, calcium, chloride, hardness, iron, magnesium, and manganese) remained outside of benchmark at MW-704 LLA throughout 2022. This well is located outside the cut-off wall and is installed in the lower bedrock level. The parameters outside of benchmark are likely natural seasonal and long-term variation, like natural manganese fluctuations at this location, and/or related to well depth and the use of sand and salt in the area.
- The increasing trend for sodium was seen from Q1-Q3 at MW-705 QAL, along with a similar increase in chloride. This location is also in the vicinity of ZLD construction activities that have been occurring throughout 2022 as well as road maintenance activities such as road salt application, and vehicle traffic, which may result in an increasing trend for certain parameters. Salt related sodium and chloride decreased at MW-705 QAL in Q4 2022, while nitrogen as ammonia remained stable.
- Six parameters (calcium, chloride, hardness, magnesium, manganese, and sodium) at MW-705 UFB continue to be above benchmark ranges but have remained stable throughout the year. These parameters have been elevated since Q4 2020 with exception of sodium and chloride and have slowly trended upward since 2015.
- Aluminum was also higher than the benchmark since 2018 at KMW-5R during the annual sampling event in Q3. Aluminum peaked in Q3 2020, and concentrations significantly decreased to near the benchmark level in Q3 2021 before increasing again in Q3 2022. Aluminum is commonly found in wells with high turbidity levels because colloidal aluminum can bypass sample filters. Turbidity in KMW-5R has typically been higher than in other wells. KMW-5R is a low recharge well that is pumped down a day in advance of sampling to help ensure the sample is accurately representing the water quality of the location, and a bailer is used to sample which can increase sediment disturbance during sample collection. pH was slightly below the benchmark at KMW-5R in Q2-Q3 2022 and returned to the benchmark range in Q4 2022. pH can vary naturally due to temperature, flow, redox, and precipitation.
- pH decreased in Q2 2022 and remained below the benchmark range through Q4 2022 at HW-1U UFB. Calcium was elevated slightly above the benchmark in Q1, Q3, and Q4 at this location, which is likely related to the elevated bicarbonate alkalinity observed in Q3 and Q4. Naturally occurring iron (Q3, Q4) and manganese (Q2-Q4) were also elevated above the benchmark at HW-1U UFB in 2022.
- Manganese was observed outside of the benchmark value at several locations throughout 2022 (HW-1U UFB, HW-8U, HYG-1, MW-704 DBA, MW-704 LLA, MW-705 UFB, and MW-9R). Manganese is found ubiquitously in the environment and is expected to vary in groundwater throughout the region, often as a function of the redox environment. Manganese is monitored in shallow water within the HTDF on a regular basis and has been found at a concentration ranging from 129-1,060 parts per billion (ppb) throughout 2022. Most of the wells outside of the cut-off wall do not have matching manganese signatures, and more importantly, they are not accompanied by HTDF signatures such as sulfate and sodium at magnitudes found in the HTDF.

- In Q1 2021, ammonia at HYG-1 fell below the benchmark for the first time since Q2 2020, it remained below the benchmark in Q2 and then was elevated in both Q3 and Q4 2022, peaking in Q3.
- All parameters had decreasing trends at MW-701 UFB, except for bicarbonate alkalinity.
- Mercury was over the benchmark at MW-702 QAL, a leachate monitoring well inside the cutoff wall, throughout 2022. A different leachate monitoring location MW-701 QAL had an increase above the benchmark for mercury in Q3 2022. These leachate monitoring wells have varying recommended benchmark ranges, all within the range of typical mercury concentration at the site. Mercury is known to be present in precipitation (atmospheric deposition) and the results may be a natural occurrence. Eagle regularly samples the HTDF for mercury and it is found in lower concentrations than results at MW-702 QAL and MW-701 QAL.
- pH has been historically variable at MW-702 QAL, while the pH at MW-703 QAL has been stable while remaining below the benchmark range since 2018. Natural variations of pH may be greater than 1 S.U., and the possibility of pH falling outside of the benchmark range for shallower wells that are more influenced by precipitation or changing water elevations is likely.
- pH at MW-704 LLA has been generally decreasing since 2019 and could be related to the wetland irrigation discharge of lower pH river water at Outfall 003.

In 2022, trend testing was conducted using the Mann-Kendall test with Sen's slope estimator. The Mann-Kendall test is a non-parametric evaluation for increasing or decreasing trend, and Sen's slope estimator provides an indication of the magnitude of the trend. Although the Mann-Kendall test can be computed in most cases, guidance suggests that it is not appropriate to use for evaluating trend when there are fewer than eight (8) to twelve (12) detected measurements and/or the highest reporting limit is greater than most observations (USEPA, 2009). The trend testing was conducted only on parameters for which most of the wells had eight or more samples above detection limits. Well-parameter pairs with fewer than 40% of samples above reporting limits and/or fewer than six (6) detected samples were excluded. Based on these criteria, the parameters that were considered were bicarbonate alkalinity, calcium, chloride, hardness, iron, magnesium, manganese, PH, potassium, sodium, and sulfate. Visual outliers and outlier detection limits were removed from the data. Non-detect values were set to the reporting limit, which may introduce some error into the analysis due to variation in detection limits among samples.

Tabulated results of the GW trend analyses are shown in Appendix G The p-value determines whether a monotonic trend exists at 95% confidence. For this test, "no trend" is indicated when the p-value is >0.05. When the p-value is \leq 0.05, there is either a "POSITIVE" (increasing with time) or "NEGATIVE" (decreasing with time) trend indicated. For compliance monitoring locations in which results are outside of established benchmarks for at least two consecutive sampling quarters and a potential trend is identified, the trend charts are provided in Appendix G.

7.1.2. Quarterly Surface Water Quality Monitoring

Surface water sampling was conducted on a quarterly basis in 2022 at eight surface water locations by TriMedia. Four locations are associated with surface water resources in the subwatershed

containing the HTDF and four are associated with the subwatershed of the milling facility. The samples collected represent winter base flow, spring snowmelt/runoff, summer base flow, and the fall rain season. Samples were collected in March (Q1), June (Q2), August (Q3), and November (Q4) in 2022. A map of the surface water sampling locations is found in Appendix H. Samples are collected in accordance with the Eagle Project Quality Assurance Project Plan (QAPP) and Standard Operating Procedures (SOP) (North Jackson, 2004a and 2004b) and the results are summarized and compared to the benchmarks (i.e., upper prediction limit) and are located in the tables found in Appendix I. Measured water levels in HMP-009 (Wetland EE) are also included in Appendix I.

As stated in the groundwater quality monitoring section above (7.1.1), the surface water benchmark values were also recalculated in 2018 using results that were not determined to be trending based on statistical analysis. A sufficient data set was also available which allowed the establishment of benchmarks for each season which will help to account for seasonal variability. Benchmarks were not updated at locations HMP-009 and HMWQ-004 as they did not have enough data points to revise the benchmarks at that time. Results for HMP-009 will continue to be compared to the initial benchmark values established in 2014. HMWQ-004 was a new surface water reference location that was added in 2020. For the remaining locations, results will now be compared based on seasonal variation (i.e., Q1 2017 compared to Q1 2018) per Special Permit Condition L2 of the Humboldt Mill Part 632 Mining Permit (MP 01 2010).

Middle Branch Escanaba River Monitoring Locations MBER-002 (left) and MBER-003 (right), August 2022

Monitoring Results

The Humboldt Mill Surface Water and Sediment Monitoring Plan prescribes a long parameter list for surface water samples that are collected annually (Q3 2022) and a shorter list to be used during the remaining quarterly monitoring events (Q1, Q2, Q4 2022). In addition to grab samples, field measurements (DO, PH, ORP, specific conductivity, temperature, and turbidity) were collected and determined using a YSI multiparameter water quality meter. Flow measurements were obtained, where conditions allowed, using a wading rod and current meter. Flow rates for location MER-002 were recorded from the USGS website for the station located adjacent to the monitoring location (i.e., 04057800 Middle Branch Escanaba River Humboldt Mill location). Water quality samples were

shipped overnight to Pace Analytical Services in Grand Rapids, Michigan, for analysis. Parameters requiring low-level analysis were sent to Eurofins Frontier Global Sciences in Bothell, WA by subcontract of White Water Associates Laboratory in Amasa, MI.

The following is a summary of field observations that occurred at compliance monitoring locations in 2022:

- HMWQ-004 is located in an area in which the only contributions are related to precipitation and storm water run-off from the adjacent roadway, therefore sampling from this location is dependent upon precipitation. Similar to previous years, there was insufficient water to collect samples from this location in 2022.
- MER-002 is located upstream of Outfall 004 near the bridge crossing on Wolf Lake Road, and just downstream from the pump house used to recirculate river water within Wetland EE. pH results were greater than seasonal benchmarks for two consecutive Q4 sampling events at MER-001 and three consecutive sampling events at MER0-002. Reference location MER-001, located upstream follow a similar Q4 pH trend, showing an expected seasonal influence.
- MER-003 is located downstream of Outfall 004 and would be expected to be somewhat influenced by the discharge water quality. The discharge water quality meets all requirements of Eagle's NPDES permit but is not identical to water quality that was used when calculating initial benchmarks. pH was elevated for the last three Q4 sampling events. Reference surface water location MER-001 and monitoring location MER-002 also had elevated results for pH in Q4 indicating that in addition to the influence of the outfall water quality that there are also regional influences unrelated to mining that are also occurring. pH is continuously monitored in Eagle's effluent discharge, and the results have been within permit requirements without any non-compliance of the permit-established criteria in 2022.
- HMP-009 is located north of the HTDF in Wetland EE and is strongly influenced by the recirculating Escanaba River water. pH, Mercury, and TSS (total suspended solids) were elevated for two consecutive Q2 sampling events. Iron and TSS were detected above benchmarks for three consecutive Q3 sampling events. pH and Iron were within a similar range at MER-002 which is located near the river pumphouse and therefore would be indicative of the water quality being distributed to the wetland. Mercury is known to be present in precipitation (atmospheric deposition) and the results may be a natural occurrence.
- WBR-002 is located downstream of WBR-003 and near the old legacy iron tailings basin. Bicarbonate alkalinity was greater than established benchmarks for four consecutive Q4 sampling events. These surface water parameters at the Black River monitoring station over benchmark levels are likely effects of natural variation and not likely to be from any impacts from milling related activities.
- WBR-003 is located downstream of WBR-001 and WBR-002 the furthest south of the mill site and downstream of a nearby old legacy iron tailings basin. Bicarbonate alkalinity was greater than established benchmarks for two consecutive Q2 sampling events. Boron, and TSS were slightly elevated for two consecutive Q3 sampling events, and pH was elevated for two consecutive Q4 sampling events. These surface water parameters at the Black River monitoring station over benchmark levels are likely effects of natural variation and not likely to be from any impacts from milling related activities.

In 2022, trend testing was conducted using the Mann-Kendall test with Sen's slope estimator. The Mann-Kendall test is a non-parametric evaluation for increasing or decreasing trend, and Sen's slope estimator provides an indication of the magnitude of the trend. Although the Mann-Kendall test can be computed when there are fewer than eight (8) to twelve (12) detected measurements and/or the highest reporting limit is greater than most observations (USEPA be computed in most cases, guidance suggests that it is not appropriate to use for evaluating trend, 2009). The trend testing was conducted only on parameters for which most of the wells had eight or more samples above detection limits. Location-parameter pairs with fewer than 50% of samples above reporting limits and/or fewer than six (6) detected samples were excluded. Based on these criteria, the parameters that were considered were bicarbonate alkalinity, calcium, hardness, iron, magnesium, manganese, PH, potassium, sodium, and sulfate. Visual outliers and outlier detection limits were removed from the data. Non-detect values were set to the reporting limit, which may introduce some error into the analysis due to variation in detection limits among samples.

Tabulated results of the SW trend analyses are shown in Appendix J The p-value determines whether a monotonic trend exists at 95% confidence. For this test, "no trend" is indicated when the p-value is >0.05. When the p-value is \leq 0.05, there is either a "POSITIVE" (increasing with time) or "NEGATIVE" (decreasing with time) trend indicated. For compliance monitoring locations in which results are outside of established benchmarks for at least two consecutive sampling quarters and a potential trend is identified, the trend charts are provided in Appendix J.

7.2. Sediment Sampling

Sediment sampling is required every two years and was conducted on August 29, 2022. Sediment monitoring stations are co-located with surface water monitoring stations and consist of reference stations MER-001 and WBR-001, HTDF sub-watershed monitoring stations MER-002, MER-003, and HMP-009 and Mill sub-watershed monitoring stations HMWQ-004, WBR-002, and WBR-003. Per the Part 632 Mining Permit, the sediment sample results were compared to the Consensus-Based Probable Effect Concentrations found in MacDonald et al., 2000. This included comparison to the threshold effects concentration (TEC) and probable effects concentration (PEC). A result below the TEC indicates that it is unlikely that harmful effects would be observed in sediment-dwelling organisms. In contrast, a result above the PEC indicates that harmful effects would likely be observed in sediment-dwelling organisms. To remove some of the uncertainty in effects, the Wisconsin DNR recommends calculating a Midpoint Effect Concentration (MEC) which is the calculated average between the TEC and PEC (i.e. [TEC+PEC]/2). Using the TEC, MEC, and PEC values, the WI DNR also established a rating system to better understand the level of concern the concentrations merit. The ranking is from one to four, where Level 1 is the least concerning and Level 4 is the most concerning. This ranking system was used to help interpret the findings of the 2022 sediment sampling event which are summarized below.

- Three parameters at three different sediment monitoring locations had results between the TEC and PEC, and there was one sampling location where results were above PEC values. Two reference sediment monitoring locations also had parameters above threshold and probable effect concentrations. In 2020, two locations had results that fell between the TEC and PEC, which was a decrease from 2018 when six parameters at four different sampling locations were between TEC and PEC.
- The arsenic result at location MER-002, upstream of Outfall 004, was found to be between the TEC and PEC. After a review of results from the baseline sampling event, Eagle observed that the arsenic concentration at MER-002 was above the PEC in May 2014 prior to the

operation of the mill. The ranking for this location is a Level 2 in which there is low level of concern that harmful effects would be observed in sediment-dwelling organisms. Coincidentally, arsenic is naturally elevated in soil and groundwater in the region.

- Copper at MER-003 was found above the TEC and below the PEC. The copper concentrations decreased compared to previous results in both 2020 and 2018. The ranking for this location is a Level 2 indicating a low level of concern that harmful effects would be observed in sediment-dwelling organisms.
- Copper concentrations at HMP-009 were between the TEC and the PEC. HMP-009 was first sampled in Q3 2018 and copper was between the TEC and PEC at that time. The ranking for this location is a Level 2 indicating a low level of concern that harmful effects would be observed in sediment-dwelling organisms. Nickel at HMP-009 was over the PEC in 2022, and between the TEC and PEC in 2018. The ranking for this location is a Level 4 which represents the concentration above which adverse effects would frequently occur in sediment-dwelling organisms. HMP-009 is located near Outfall 003 which is used for wetland irrigation of Wetland EE. Eagle will further investigate the elevated nickel and copper levels at this location in 2023 and consider corrective actions that may be necessary. A follow up surface water sediment sample will be collected in 2023 at this location as part of the investigation.

A summary of the sediment results is provided in Appendix K.

7.3. Regional Hydrologic Monitoring

7.3.1. Continuous Groundwater Elevations

Monitoring wells MW-701, MW-702, MW-703, MW-704, MW-705, HYG-1, HW-2, HW-1U, HW-1L, HW-8U are instrumented with continuous water level meters and downloaded quarterly by TriMedia field technicians. Permit condition F-9 requires that water levels are continuously monitored in Wetland EE and the HTDF. HTDF water level readings were recorded using a stilling well containing a pressure transducer which was installed in the HTDF to collect continuous water level measurements. To ensure accurate readings in the winter, an "ice eater" was installed to prevent the water surrounding the stilling well from freezing. A map of monitoring locations can be found in Appendix E.

Special Condition F-9a requires continuous monitoring of water levels on each side of the cutoff wall and a comparison of the gradient changes measured versus pre-operational predictions. In 2022, there was a continued effort to maintain the HTDF water level at an operational level between 1530.5 and 1531.0 ft MSL. This has resulted in the current HTDF water level being approximately 2 feet lower than the wetland water level and therefore groundwater flows toward the HTDF rather than away.

Continuous groundwater elevation results are reported by water year (October 1 – September 30). Water year is the preferred approach for reporting water levels because the hydrographs demonstrate the effect of late fall and winter precipitation, which melts and drains in spring, in one 12-month hydrologic cycle. Copies of groundwater hydrographs are in Appendix L. Findings from the hydrograph review include:

• The hydrographs clearly illustrate when the wells are pumped down in advance of, or during, sampling and the rate at which they recharge.

• Equipment malfunctions which resulted in data gaps of continuous water level data occurred at two locations over the course of the year. All water level meters were replaced as soon as possible after discovery of the malfunction. Table 7.3.1 summarizes the locations, duration, and potential cause of equipment malfunctions:

Locations Date Equipment Malfunction Occurred		Reason for Malfunction
MW-702 QAL	9/7/2022 – 11/22/2022	Battery Failure
MW-705 UFB	5/24/2022 – 9/7/2022	Battery Failure

Table 7.3.1 Summary	of Continuous	Monitoring Ea	uipment Malfunctions

- HW-1L, HW-1U LLA are in a tight formation and are very slow to recharge. HW-1L needs at least 4 quarters of recharge between sampling to ensure independent samples and HW-1U LLA needs at least 3 quarters between sampling events to ensure independent samples are collected.
- Like previous years, most of the shallower, quaternary aquifer wells indicate seasonal influence as groundwater elevations decreased during the winter months and increased again in during the onset of spring melt.

7.3.2. Continuous Surface Water Monitoring

Special permit condition F-9 requires monitoring the effectiveness of the cut-off wall. This condition includes the requirement for collecting and analyzing water levels in wells, Wetland EE, and in the HTDF in comparison to predicted water levels; comparisons of groundwater quality between upgradient and downgradient wells, and analysis of the water balance of the facility to aid in evaluation of the data.

During the application process, the operating level of the HTDF was expected to be approximately five feet higher than the elevation of Wetland EE. Therefore, a significant change in water elevations between the inside and outside of the cutoff wall was anticipated and it was expected that this approach would be used throughout operations. However, in 2014 to ensure operational flexibility and as an additional contingency for extra storage capacity in the HTDF, the water management plan was modified, and the operating water level was revised to ten feet lower than originally planned. This lowered the operational HTDF water level to an elevation less than that of Wetland EE. As a result, the predicted gradient measurements originally calculated with a high HTDF elevation are no longer a measurement of cutoff wall effectiveness. In addition, the water elevation cannot be compared in the reverse gradient due to outside influences on the water levels in the wetland.

Per NPDES permit MI0058649, Eagle is required to maintain the hydrology of the wetland and deliver water flows that represent post-closure flows. Eagle maintains wetland hydrology using a river water intake/recirculation system. Continuous surface water monitoring in Wetland EE would be impacted by this outside influence of river water recirculation and would not indicate effectiveness and integrity of the cut-off wall, and therefore continuous readings are not currently being collected. Another requirement to ensure an effective cutoff wall is to monitor the chemical signatures between the HTDF, groundwater wells within the cut-off wall and their monitoring pair outside of the cut-off

wall. This will continue to be the method utilized to verify the integrity of the cutoff wall and is discussed in section 7.4 below. Wetland EE elevations are currently recorded via staff gauge readings.

In 2023, Eagle will be installing continuous surface water monitoring devices in Wetland EE as part of an Adaptive Management Plan (AMP) to meet stormwater outflows to Wetland EE expected at closure and monitor water levels throughout the AMP study.

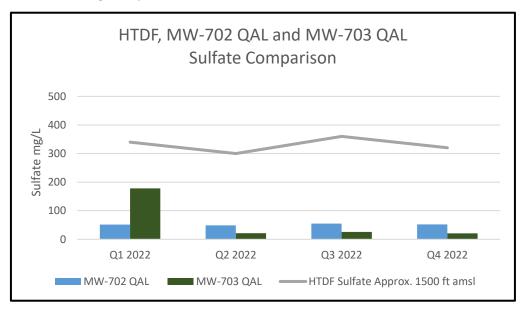
Surface water grab samples and field parameters at Wetland EE continue to be collected quarterly when possible although results are strongly influenced by Escanaba River water quality, and precipitation (i.e., rainfall and snow melt).

7.4. Cut-Off Wall Effectiveness Review

As discussed in special permit condition F-9, Eagle is required to monitor the effectiveness of the cutoff wall in terms of hydraulic containment. This condition includes the requirement for collecting and analyzing water levels in wells, Wetland EE, and in the HTDF in comparison to predicted water levels; comparisons of groundwater quality between upgradient and downgradient wells, and analysis of the water balance of the facility to aid in evaluation of the data.

Prior to operations, Eagle's consultants prepared predictions of water gradients that would exist in the facility over a 10-year period of operation. The expectation was that water levels in the HTDF would rise to approximately 1540 ft amsl, and a gradient of up to 9 feet of hydraulic head would develop in paired wells over many years of operation. However, the water balance of the facility has not followed the trajectory that was used in that prediction because Eagle purposely lowered the water level of the HTDF by approximately 10 feet below that which was used to develop the gradient prediction. Over the past four years the facility water level has fluctuated by several feet (up and down) due to heavy precipitation and subsequent drawdown periods. As such, it is challenging to complete a direct comparison of the prediction to the actual gradients. Fortunately, the water quality, static water elevations, and other water balance observations are useful to demonstrate that the cut-off wall continues to perform well to hydraulically contain the tailings disposal facility despite nuances related to seasonal water balance.

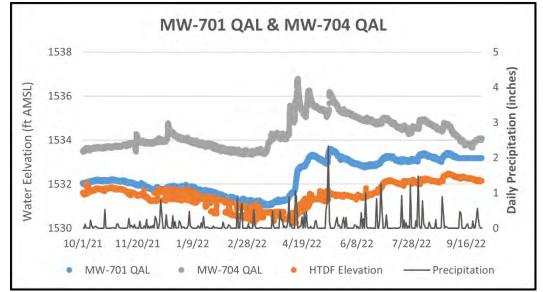
The tabular summary provided in Appendix M provides commentary on various observations that the cut-off wall continues to meet hydraulic containment performance standards. Based on this data there is sufficient information to show that the cut-off wall is functioning as expected.


7.4.1. Water Quality

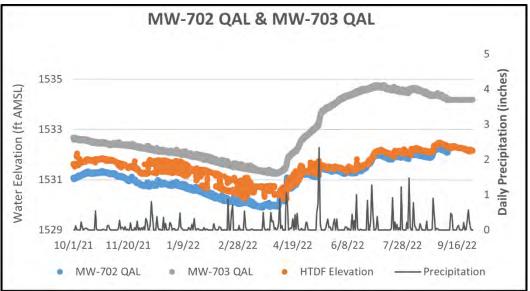
The effectiveness of the cut-off wall was also evaluated by comparing sulfate levels. Sulfate was chosen due to its substantial presence in the HTDF and its relative mobility in groundwater (i.e., low tendency for adsorption or precipitation in groundwater). As shown in the graphs below, the water quality at the leachate monitoring well pairs is distinct and shows that the cut-off wall is functioning as expected.

Sulfate levels at MW-701 QAL, a well inside the cut-off wall, are higher than sulfate levels at MW-704 QAL, and approximately correspond to the sulfate concentration in the HTDF. The sulfate concentration in groundwater in the well outside of the cut-off wall is much lower and does not correlate with concentrations in the HTDF. This relationship suggests overall water quality of the HTDF is not communicating with this well.

Though sulfate levels in MW-702 QAL, a well located within the cut-off wall, were lower than sulfate levels measured in the well located outside the cut-off wall (MW-703 QAL) in Q1, the sulfate concentrations at all of these wells are lower than those seen in the HTDF. This suggests that the cut-off wall is functioning as expected.



7.4.2. Water Levels


The elevation of groundwater compared to HTDF elevation also provide evidence that the cut-off wall is functioning as expected.

Fluctuations in groundwater elevation in MW-701 QAL were similar to what was seen in the HTDF, as expected. Groundwater elevations in MW-704 QAL still fluctuated seasonally with snow melt and precipitation but appeared to act independently from the HTDF water level fluctuations. MW-704

QAL is influenced by local discharges to Outfall 003 at Wetland EE and due to proximity and depth relative to the wetland.

Throughout most of 2022, the elevation of groundwater at MW-702 QAL corresponded to the HTDF levels, as expected. Though MW-703 QAL also followed similar fluctuations in late 2021 and early 2022, it remained at a higher elevation throughout the rest of the year, indicating that it was not influenced by the HTDF and was independently impacted by snow melt and precipitation.

Note: MW-703 QAL experienced diver failure on 9/7/2022, no Q4 data available.

7.5. Biological Monitoring

Biological monitoring events conducted in 2022 included surveys of birds, large and small mammals, frogs, toads, fish, and macro invertebrates. Results from each survey have been compiled into annual reports which are available upon request. A summary of each survey is provided below.

7.5.1. Flora and Fauna Report

The 2022 flora, fauna, and wetland vegetation surveys were conducted by Barr Engineering (formerly King & MacGregor Environmental, Inc. (KME)). Table 7.5.1 below outlines the type and duration of the surveys that were conducted in 2022. A map of the survey locations is included in Appendix N.

Survey Type	Survey Date				
Birds	June 13, 14; September 21, 22				
Small Mammals	September 20-22				
Large Mammals	May – September				
Toads/Frogs	May 5; June 6; July 6				
Threatened and Endangered Species	May - September				

 Table 7.5.1 Type and Duration of 2022 Ecological Investigation

The wildlife and plant species identified during the 2022 surveys within the study area are like those identified during previous flora and fauna surveys. Following is a summary of the survey results:

- A combined total of 697 birds representing 71 species were identified during 2022 bird surveys. Chestnut-sided warbler (*Setophaga pensylvanica*), American robin (*Turdus migratorius*), white-throated sparrow (*Zonotrichia albicollis*), and Nashville warbler (*Vermivora ruficapilla*) were the most abundant birds observed during the June 2022 survey, while Canada goose (*Branta canadensis*), black-capped chickadee (*Poecile atricapillus*), blue jay (*Cyanocitta cristata*), and American crow (*Corvus brachyrhynchos*) were the most abundant during the September 2022 survey. The bird species identified in 2022 are like those bird species identified in previous surveys conducted within the study area and are consistent with the bird species expected to be found in the habitats present.
- Forty-six small mammals representing eight species were collected during the September survey period. The most common small mammal identified during the survey was the Deer mouse (*Peromyscus maniculatus*). The total number of individuals captured, and species richness recorded in 2022 is consistent with those in previous years, with a small increase in number of species collected. No threatened, endangered, or special concern small mammals were observed during any of the surveys. The small mammals encountered within the study areas during the 2022 survey period is typical of those expected in the habitats present and are consistent with previous survey results.
- During the 2022 surveys, no large mammals were directly observed, however, tracks and scat
 of Whitetail deer (*Odocoileus virginianus*) were present. The American black bear (*Ursus
 americanus*), bobcat (*Lynx rufus*), coyote, the federally endangered gray wolf, moose (*Alces
 alces*), and red fox (*Vulpes vulpes*) were not observed during 2022 but were previously
 observed or are regionally common species possibly present within the study area. The large
 mammal species detected during the 2022 surveys are regionally common large mammal
 species and are expected to use the habitats in the Study Area.
- Four frog species were observed during the 2022 surveys: gray treefrog (*Hyla versicolor*), green frog (*Rana clamitans*), northern spring peeper (*Pseudacris crucifer*), and western chorus frog (*Pseudacris triseriata*). Calling activity included Call Index Values of 1, 2, and 3.

As in most years, the spring peeper was the most frequently recorded species in 2022. The 2022 observations are consistent with previous surveys.

7.5.2. Threatened and Endangered Species

The Michigan Natural Features Inventory (MNFI) maintains a database of rare plants and animals in Michigan. Barr requested a Rare Species Review to determine if any protected species had been found within 1.5 miles of the Study Area. Table 7.5.2 lists the species identified during the MNFI review process.

Tuble 7.5.2 Mill Review Results of Study Area					
Species	Classification				
Canada rice grass	State threatened species				
American bittern	State special concern species				
Bald eagle	State special concern species				
Pickerel Prog	State special concern species				
Osprey	State special concern species				
Great blue heron rookery	Rare natural feature				

Table 7.5.2 MNFI Review Results of Study Area

In accordance with Michigan Department of Natural Resources (MDNR) guidelines (MDNR 2001), Barr surveyed for any MNFI listed species and their habitats during the appropriate season. The exception is Canada grass which is no longer surveyed on an annual basis as there is no suitable habitat within the study area. Following are the results of the threatened and endangered species survey:

- Pickerel frogs have not been observed at any times since the surveys began in 2014, however suitable habitat may exist within the study area.
- American bitterns were observed near Survey Point 5 in June 2022.
- The bald eagle nest on the north shore of Lake Lory was observed to be in good condition, but the nest was not occupied during May, June, or July observations.
- In May, June, and July 2022, two unoccupied nests were identified in the heron rookery. This is the third year the rookery has been unoccupied during field surveys; however, the usage of the rookery has varied considerably since observations began. This rookery has been abandoned and reoccupied once before.
- An osprey was identified in May 2022 for the first time since observations began in 2014.

A copy of the 2022 Humboldt Mill flora and fauna report is available upon request.

7.5.3. Fisheries and Macro Invertebrate Report

The 2022 Fisheries and Macro-Invertebrate annual surveys were conducted by Advanced Ecological Management (AEM). A total of six stations were surveyed in June 2022, including two stations on the Middle Branch of the Escanaba River (MBER), one station on a tributary of the Middle Branch of the Escanaba, one station on an unnamed tributary of the Black River (WBR), one station in Wetland Complex EE located northeast of the HTDF, and Lake Lory. A map of the survey locations is included in Appendix O.

Stream Stations

A total of 102 fish representing 13 species were collected in 2022 from all stream stations, which is 218 less fish than were observed in 2021. Higher than average populations were found in 2021. In 2020, a total of 169 fish representing 18 species were collected from all stream stations. The 2022 results are comparable to all previous surveys (with exception of 2021). The elevated number of fish collected in 2021, can be attributed to an abnormally higher number (101) of central mudminnows found at MBER1. The central mudminnow (*Umbra limi*) was the most frequently collected species (28) followed by the Northern redbelly dace (*Chrosomus eos*) (14). No threatened, endangered, or special concern fish species were observed at any of the stream stations in 2022. The following is a summary of the findings:

- The community composition of fish species was generally consistent over the past six years.
- Beaver impoundments have been observed at Station 1 since 2014 and continue to influence the hydrology and potentially the number of fish collected during the surveys at that location. In 2021, a new station location was selected downstream of the road crossing to minimize the influence of beaver impoundments that are located upstream of the road crossing.
- A total of 40 fish representing six taxa were collected from Station 1 in 2022, which is a decrease from the 94 fish collected in 2021 and more representative to the 36 fish collected in 2020.
- The number and species of fish observed at Station 5 increased for the first time in several years from 7 fish in 2021 to 16 fish in 2022. The fish collection totals have varied since 2018, when 15 fish were observed. In 2019, there was a significant increase in fish due to an unexpected large number of central mudminnows found.
- There was a significant decrease in number and taxa at MBER1 in 2022, as 36 fish were collected representing seven species, and in 2021, 161 fish were collected representing 11 species. During the 2020 aquatic survey, a total of 80 fish representing 10 taxa were observed. The increase observed in both 2020 and 2021 is primarily associated with the large number of central mudminnows that were present.
- A total of 10 fish representing 10 taxa were observed at MBER2 in 2022, versus a total of 58 fish representing 10 taxa were observed in 2021. Community composition of fish species has varied among surveys at MBER2.

Station MBER1 – Downstream Extent, June 2022

Using the P-51 protocol, a total of 941 macroinvertebrates were collected from all four stream stations investigated in 2022. The total number of macro-invertebrates collected in 2022 decreased by 44 specimens compared to 2021. Though, the numbers and taxa observed in 2022 remained consistent with previous surveys. No threatened, endangered, or special concern macroinvertebrate species were observed at any of the stream stations in 2022. Table 7.5.3 below shows a macroinvertebrate data comparison for all stream locations.

	2022	2021
Station 1	136	113
Station 5	150	164
MBER1	285	343
MBER2	370	365
Total:	941	985

 Table 7.5.3 Stream Macroinvertebrate Collection Data Comparison

A summary of the fish, macroinvertebrate, and habitat ratings for the four stream stations are displayed in Table 7.5.4 below. Note that station 1 is a low gradient system that is frequently affected by beaver activity, which has impounded the water. The low gradient coupled with the beaver activity impounding water has likely contributed to the fluctuation between "poor" and "acceptable" macroinvertebrate community ratings.

		2022	2021	2020	2019	2018	2017	2016	2015	2014
Station 1	Fish Community	Poor	N/A	Poor						
	Macroinvertebrate Community	Poor	Poor	Poor	Acceptable	Acceptable	Poor	Acceptable	Acceptable	Acceptable
	Stream Habitat	Good	Excellent							
	Fish Community	Poor	Poor	Poor	N/A	Poor	N/A	Poor	Poor	Poor
Station 5	Macroinvertebrate Community	Acceptable								
	Stream Habitat	Good								
MBER1	Fish Community	Poor	N/A	Poor						
	Macroinvertebrate Community	Acceptable								
	Stream Habitat	Excellent								
MBER2	Fish Community	Poor	N/A	Poor						
	Macroinvertebrate Community	Acceptable								
	Stream Habitat	Excellent								

Table 7.5.4 2022 Habitat Ratings

N/A =Not Applicable

Lake Lory

A total of 170 fish were collected from Lake Lory in 2022 representing seven different taxa. A total of 167 fish were collected from Lake Lory in 2021, a total of 193 fish were collected from Lake Lory in 2020, and a total of 294 fish were collected from Lake Lory in 2019. However, the community composition was generally consistent among years surveyed by AEM. Bluegills (*Lepomis macrochirus*), largemouth bass (*Micropterus salmoides*), and black crappie (*Pomoxis nigromaculatus*) were the most frequently collected species among all sample gear in 2022. Many of the fish observed in Lake Lory appear to be in good condition, but similar to previous years, black spot was observed in several species. Black spot is caused by a natural parasite (larval trematode) that burrows into the skin of the fish. Per the MDNR website, black spot is a common disease in earthen bottom ponds and lakes.

Aquatic macroinvertebrate sampling was conducted on June 11, 2022, within Lake Lory where a total of 151 macroinvertebrates were collected, which is 114 fewer than the 265 that were collected in 2021. Snails, scuds, and true flies were the most abundant macroinvertebrates collected from Lake Lory in 2022 and the community composition was generally consistent with the 2015 through 2021 macroinvertebrate communities. No threatened, endangered, or special concern macroinvertebrate species were observed in Lake Lory.

Lake Lory – June 2022

Wetland EE

Three brook sticklebacks (*Culaea inconstans*) and nine central mudminnows were collected from Wetland EE during the 2022 study. One brook stickleback was collected in 2021, and one brook stickleback and one central mudminnow were collected during the 2020 study. Two brook sticklebacks were collected here in the 2018 and 2019 studies. No fish were collected during the 2015 or 2017 studies and one juvenile brook stickleback was collected from this location in 2016.

Aquatic macroinvertebrate sampling was conducted on June 7, 2022, where a total of 107 macroinvertebrates were collected, which is 59 more than was found in 2021 (48 total). Odonates, true flies, and mayflies were the most frequently collected species in 2022. These species observed have been consistent between survey years. No threatened, endangered, or special concern macroinvertebrate species were observed in Wetland Complex EE. The 2022 aquatic vegetation density appeared to be consistent with conditions observed in the previous five aquatic surveys (2017-2021). Cattails have grown in most of the areas of Wetland Complex EE that were previously open water. A copy of the 2022 Humboldt Mill Aquatic Survey Report is available upon request.

Wetland EE – North of the HTDF, June 2022

7.5.4. Fish Tissue Survey

No fish tissue survey was required to be completed in 2022. The next survey will be conducted in 2023.

Miscellaneous Monitoring

7.6.1 Soil Erosion Control Measures

Soil erosion and sedimentation control (SESC) measures related to the construction of mining facilities falls under the purview of Part 632. Silt fence and riprap was maintained near the east side of the WTP expansion area where the risk of soil erosion and sedimentation was present, primarily near the adjacent wetland boundary areas in 2022. A mix of SESC measures were put in place in November of 2021 for the ZLD treatment plant project and have been maintained throughout construction. An existing vegetated berm is in place between the excavation site and the delineated wetland. Straw waddles were placed along the base of this berm and around monitoring wells as a secondary control. Silt fence was placed where the berm was nonexistent.

The Department will be notified if any construction activities occur where soil erosion measures are necessary, and all inspections will be completed as required.

7.6.2. Impermeable Surface Inspections

The Impermeable Surface Inspection and Surface Repair Plan outlines the requirements of integrity monitoring of surfaces exposed to site storm water and areas of ore, concentrate and chemical handling/storage. Areas inspected in 2022 included sumps and floors of the coarse ore storage area (COSA), concentrator building, concentrate load out facility, and WTP. Monitoring was conducted monthly as required by the plan.

Floors are inspected for cracks and overall general condition and the sumps are evaluated for any areas of cracking, pitting, or other surface deficiencies, and accumulation of material. All inspection results are recorded on the impermeable surface inspection form by Environmental Department staff and stored in the compliance binder at the Mill Administration Building. Any issues identified during the inspections are immediately reported and fixed by onsite staff. Follow-up inspections are completed to ensure the repairs were made.

In November 2022, eleven locations were paved for improvements to areas of high traffic, expansion of vehicle parking, and areas where curbing was needed to redirect stormwater, a map is provided below.

Map of the additional areas paved in 2022.

7.6.3. Tailings Line Inspection

Per Mining Permit Condition E-12, the double-walled HDPE pipeline is monitored by Mill operators and Environmental Department staff. Any concerns identified during the inspections would be immediately reported to the Mill operations and maintenance departments who would complete any necessary repairs. No new concerns were identified in 2022.

7.6.4. Geochemistry Program

Per Permit Condition F-1, Eagle continued implementation of the comprehensive HTDF geochemistry monitoring program which was prepared by Hatch Associates in 2015 and subsequent revisions by Golder Associates. In 2022, the monitoring program included collecting high resolution physiochemical profiles, limnological modeling, water quality monitoring, characterization of watershed input chemistry, and interpretation of the effects of changes in water management, water treatment, and tailings deposition on the chemistry and layer dynamics within the facility.

Physiochemical Monitoring

Eagle continued to conduct physiochemical monitoring of the HTDF using various multiparameter reading instruments either lowered over the side of a boat to multiple depths, or via the YSI EXO autoprofiler that was installed in 2018. In 2022, profiles were manually collected on March 17th, May 11tth, June 22nd, July 13th, October 20th, and November 3rd, 2022, using multiparameter probes. The profiling device was re-installed on the HTDF in 2022 and was operational during ice off conditions from July 11th through September 20th. This collection season had a shorter window of deployment compared to 2021 due to hardware issues and required maintenance. The YSI auto-profiler collected four profiles per day and data was regularly analyzed by geochemists to assess layer characteristics and physics.

Photo of the HTDF and YSI EXO auto-profiler, June 2021

The results of the 2022 monitoring showed that the HTDF continued to be stratified in 2022 and exhibited a six-layer system. The layers remained relatively stable with respect to position and physicochemical properties throughout the year. In 2022, Eagle continued the isolation of waste streams from the WTP and discharged them to specific depths of the HTDF to minimize unnecessary dilution of dense fluids and create distinct layers that could be managed according to their chemistry in the future. Below is a synopsis of the geochemistry observed in the six layers during 2022:

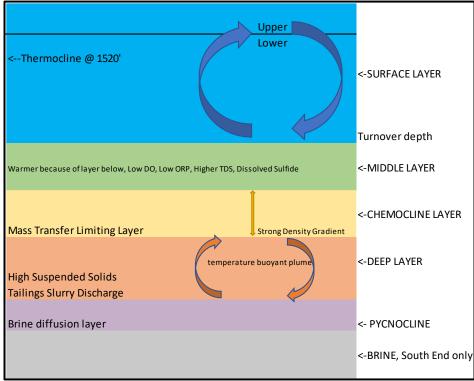
1) A mixolimnion existed from the HTDF surface at approximately 1,532 to 1,495 ft amsl (37 ft). Between May and November, this layer was separated into a 12-ft-thick epilimnion sublayer and a 20-ft-thick hypolimnion sublayer by a thermocline. Fall turnover between the epilimnion and hypolimnion layers began before the October 20, 2022, manual profile was collected as indicated by a gradual homogenization of temperature.

2) A middle layer from approximately 1,495 ft amsl to 1,479 ft amsl (16 ft) is marked by increased water temperature, a sharp drop in dissolved oxygen and oxygen reduction potential, and notable specific conductance. Since the start of operations in 2014, Eagle has not observed complete mixing

between the middle layer and the surface layer during fall or spring turnover periods. This has resulted in anoxic, strongly reducing conditions occurring below the top of the middle layer. The absence of complete vertical mixing of the water column defines the HTDF as a meromictic pit lake, one of the few known meromictic water bodies in the United States.

3) A 9-foot transitional boundary called the 'chemocline' occurred between 1,479 and 1,470 ft amsl and separated the middle layer from the deep layer. The strong density gradient across the chemocline limits the amount of mass transfer and mixing between the deep layer and the middle Layer.

4) A 'deep layer' exists from approximately 1,470 and 1,451 ft amsl or, in places, the floor of the HTDF (varies in depth based on tailings deposition areas) consists of tailings slurry water, process water, and off-specification water (filter and membrane cleaning solutions) from the WTP. The injection of warmer slurry water (25°C) into a slightly cooler deep layer (13°C) results in a buoyant plume of process water that rises to the bottom of the chemocline. After cooling, the plume sinks to the base of the deep layer. The entire process results in a convection cell that perpetually mixes and homogenizes water across this 19-ft depth interval. The deep layer is thicker within the north basin and is thinner in the south basin due to the accumulation of brine.



Aerial map identifying the HTDF north and south basins

5) Within the south basin, a second transitional boundary exists from the base of the deep layer to the top of the brine layer, called the 'pycnocline.' This layer is between 1,451 and 1,431 ft amsl (20 ft). The Pycnocline results from the strong chemical gradient between the deep layer and brine that is being deposited in the south basin; and also results from the upward diffusion of mass along this gradient. The pycnocline was first observed in 2021 and expanded by 5 ft throughout 2022.

6) A brine layer approximately 10 feet thick formed in the deepest area of the southern section of the HTDF from approximately 1,431 ft amsl to the pit floor at approximately 1,418 ft amsl (13 ft). Due to strong density, temperature, and specific conductance differences between the brine and tailings water, brine has successfully formed its own distinct layer.

As previously experienced, in the spring and fall there were thermodynamically driven shallow turnover events within the mixolimnion with some partial erosion of the upper layer of the chemocline, but complete mixing of the entire water body did not occur. Modelling suggests that the HTDF will remain stratified in 2023.

Simplified layer diagram of the HTDF, 2022.

Eagle collected a transect of eight profiles along the North-South axis of the HTDF with two goals: (1) monitor the horizontal extent of each of the HTDF layers described above, and (2) evaluate whether the subaqueous tailings ridge remained effective at preventing water in the brine layer and pycnocline from spilling into the north basin. The HTDF transect completed in 2022 substantiated both of these goals.

HTDF Transect, July 2022.

As is done annually, several modeling efforts were conducted to understand HTDF limnology for both short-term and long-term stability. Short term modeling focused on spring and fall turnover predictions of the surface water layer quality, since this water is an integral part of the WTP operations strategy. As was described in the 2019 annual report, Eagle and its consultant have demonstrated ample confidence in the density-driven physical stability of the HTDF. The vertical position of inputs and outputs influenced the layering of the HTDF as predicted, and model calibration exercised continued to reproduce changes in the HTDF that were measured in-situ, so in 2022, the majority of modeling focused on incorporating the complexity of density-driven brine behavior, testing the modeled effects of specific water treatment objectives to predict a probable case for longer-term water quality, and further refining reclamation predictions.

The main modeling activity completed in 2022 a transient limnology model which is intended to be used to predict conditions in the HTDF at the beginning of reclamation, throughout reclamation, and in the decades of stability following reclamation. Reclamation of the facility will begin concurrent with operations by using a ZLD water treatment system (until the close of operations) through the closure of the facility after operations cease. This type of model is useful for several purposes: 1) to understand how to optimize water treatment and tailings placement operations; 2) to confirm the time and cost associated with reclamation of the HTDF; and 3) to confirm closure conditions will meet regulatory obligations in perpetuity.

Previously developed CE-QUAL-W2 limnology and water quality models were well-calibrated to observed conditions, therefore the hydrodynamics of the system would be expected to be predictable when modeled forward. During 2022, modelers updated modeling framework to accept transient changes in tailings placement in the model sequences, and updated tailings placement in the model through the first half of 2027 (matching the 2022 published resource). Eagle's engineer continued work that began in 2021 to provide model inputs in 6-month increments to iterate the transient modeling (i.e., changing) conditions in water treatment and tailings placement over time. Operational

scenarios were selected which prevented significant deterioration of the surface water quality in the HTDF for as long as feasible in the mine plan, removed brine, and maintained the stability of the density stratification in the HTDF for the duration of operations. Then, a sequence of models was completed to mimic reclamation in the facility for as many 6-month increments as were needed to meet water quality objectives for parameters in the model (primarily nickel and dissolved solids). A total of 29 months of treatment was required to reach closure objectives. In 2023, additional model parameters (analytes of concern) will be added, and several alternative operational scenarios will be explored to determine if modeling outcomes are better or worse.

The two-dimensional groundwater fate and transport model that was developed in 2021 was not significantly updated in 2022 due to a lack of new inputs while the transient modeling was ongoing. Future updates that may be completed include: the incorporation of additional parameters of concern, tailings deposition design updates, model timeframe extended to 200 years post operations, and incorporation of the final water column characteristics predicted in the transient model.

Tailings Pore Water Chemistry

The tailings pore water chemistry sampling program that began in 2019 was not carried out in 2021 or 2022, however, Eagle and our consultant established plans to conduct a broader in-situ tailings porewater sampling program involving a barge mounted drill rig in 2023. This information will be used to update and/or verify modeling efforts.

Sulfur Gas Analyses

In response to sulfur gas odors detected in previous years, Eagle continued to take measures needed to monitor for sulfur gasses when working on the HTDF, including the use of gas monitors which is a common health and safety standard. Detections of both odor and H_2S were rarely encountered. During spring and fall 2023 Eagle will continue monitoring for H_2S gasses during the turnover timeframe and continue to track the relationship between concentration of dissolved sulfide present in the layer and sulfur odors to ensure that any changes are detected and addressed promptly if needed.

Concentrations of total sulfide, a proxy for dissolved H_2S gas, decreased in the middle layer between 2021 and 2022. Elevated concentrations of dissolved H_2S in the middle layer are typically associated with more noticeable odors during turnover events. Eagle planned to install an in-situ H_2S measurement sensor to work in tandem with the YSI EXO sonde for HTDF monitoring in 2022, however the sensor company experienced challenges in the integration of the H_2S sensor and our YSI EXO sonde. The company has not been able to produce H_2S data outputs that would be usable with the remote monitoring equipment. Eagle is currently exploring alternative measurement options to collect in-situ H_2S readings but does not yet have a feasible replacement.

Water Chemistry

Similar to previous years, water chemistry profile samples were collected on July 13th, 2022, from a vertical profile at multiple depths in the HTDF to monitor changes in total and dissolved concentrations and constituents of interest (COI) over time. Most COI concentrations increase with depth through the water column. All water samples collected were sent to a certified lab for analysis.

Key observations regarding water quality are divided between each layer of the HTDF:

General observations (entire basin)

- The pH of all layers of the HTDF remained above pH 6.6, showing no evidence of acidification due to tailings oxidation.
- Total thiosalt concentrations were at or below detection limits above 1,481 ft amsl in the surface and middle layers. Below this depth, total thiosalt concentrations were elevated between 1,468 and 1,454 ft amsl. Total thiosalt concentrations at 1,424 ft amsl were the highest measured since 2018.
- Concentrations of xanthate breakdown products (e.g., 2-propanol and carbon disulfide) were higher in the bottom of the surface layer, deep layer, and brine layer compared to 2021. Carbon disulfide concentrations in the brine layer were the highest measured to date.

Surface Layer

- Concentrations of TDS changed minimally compared to 2021 values. A declining trend in surface layer TDS values was first observed in 2020.
- Concentrations of magnesium, manganese, sulfate, nickel, barium, and strontium have decreased over time.
- Concentrations of the following constituents have increased in the surface layer since 2021: chloride, fluoride, alkalinity, copper, and iron.

Middle Layer

• Sulfide concentrations continue to decrease in the middle layer, following a trend observed since 2019.

Chemocline and Deep Layers

- Concentrations of the following constituents have decreased in the deep layer over time: manganese, arsenic, iron, and cadmium.
- Concentrations of the following constituents have increased in the deep layer relative to 2021: turbidity, chloride, ammonia, total nitrogen, chemical oxygen demand, carbon disulfide, copper, selenium, chromium, molybdenum, and sulfide.

Tailings Deposition and Brine Storage

The tailings deposition model design was implemented in 2022 to continue to store brine in the southern end of the HTDF. If brine was to move from the southern storage area it would not be considered problematic, but the preference is for it to be contained to just one area of the HTDF for ease of future removal. Some migration was observed in 2021, and the tailings deposition plan was adjusted to prevent this migration from continuing. The tailings deposition plan adjustment appeared to be successful at preventing migration of brine in 2022.

Approximate location of brine (including pycnocline) in yellow; minor brine migration (red), Summer 2021

Eagle is in the process of constructing a ZLD treatment plant which is scheduled to go online in late 2023 or early 2024. The plant is designed to remove brine prior to the end of operations and to facilitate rapid reclamation of the facility after operations cease. The process will involve pumping sources of brine from the HTDF and that which is produced in the WTP to the ZLD plant, which will concentrate and evaporate the liquid into a solid which can be either beneficially reused in another industrial market or disposed at a landfill.

8. Reclamation Activities

In 2022 Eagle removed approximately 1,452 cubic yards of soil from impacted areas and other various areas across site for asphalt base preparations. There are currently no plans to conduct any progressive reclamation activities in 2023. The Department will be notified in advance if any activities do commence in 2023.

Closure Planning

Closure planning continued in 2022 with the assistance of Ramboll US Consulting of Denver, Colorado. Work in 2022 primarily consisted of preparing a detailed temporary closure plan in alignment with both Lundin's Corporate Standards and Guidance from the International Council on Mining & Metals Integrated Mine (ICMM) Closure Good Practice Guide. The temporary closure plan describes the governance and activities undertaken to care for the asset, protect the environment, and maintain compliance with regulatory licenses in the event of both short-term or long-term temporary cessation of mining activities.

Throughout 2023, Eagle will advance the detailed planning for mine closure in all areas that were outlined in the 2021 revision of the plan, while remaining flexible to support change or growth within the business.

Closure related studies that occurred in 2022 included:

- Eagle continued waste characterization studies and solicitation of vendors for beneficial reuse opportunities for brine solids generated through the future brine treatment system.
- Previously a draft conceptual design was completed for the spillway that will be used for
 passive discharge at closure of the HTDF. Eagle's primary stakeholder in the design, the
 Humboldt Wetland Mitigation Bank (HWMB), was engaged in review of the preliminary
 design. In 2022 the AMP informing the near and future management of hydrology in
 Wetland EE and downgradient was drafted. The HWMB will continue to be engaged in the
 development and execution of the AMP. The AMP will be implemented in the summer of
 2023 and will adjust the water flows provided to Wetland EE, gradually transitioning the
 hydrology to the expected post-closure conditions prior to the spillway being constructed.
- Eagle and our consultants completed the predictive closure water quality model for the HTDF.
- Eagle retained a demolition company to begin producing detailed demolition and recycling plans for each structure on the property.

9. Contingency Plan Update

One element of the contingency plan is to test its effectiveness on an annual basis. Testing is generally composed of two components. The first component is participation in adequate training programs for individuals involved in responding to emergencies and the second component is a mock field test.

The Humboldt Mill Emergency Response Team (ERT) continued to be active in 2022. This team is not required by the Mine Safety Health Administration (MSHA) but was established to assist first responders in the event of an emergency. The focus of the team is to act as the liaison with local first responders as well as the Eagle Crisis Management Team (CMT), providing assistance where needed as they are considered the site experts on our equipment, locations, and emergency procedures. ERT training occurs monthly and is focused on fire system familiarization, patient packaging/stokes basket use, EMS support and assistance, emergency equipment familiarization and inventory, and rope and knot work.

In addition to the ERT, security personnel are EMTs and paramedics who are trained in accordance with state and federal regulations. This allows for immediate response to medical emergency situations.

A mock field test in the form of a desktop exercise was conducted in October 2022. The exercise tested the emergency response measures of the contingency plan and crisis management plan in place at Eagle Mine. With the assistance of Eagle Mine employees, a third-party consultant developed an emergency scenario. The scenario generally involves a situation in which both safety and environmental risks are considered and in 2022 the emergency involved a fall of ground on the ramp in the mine. In the scenario, material fell onto the decline and trapped several employees in the mine. The crisis management team was aware that a test would occur but were unaware of the nature of the emergency. During the crisis management exercise, the team worked through the incident identifying the strategic objectives, key priorities, critical decisions and triggers, and communications that would need to be made to stakeholders. The third-party consultant observed the activity to identify strengths, weaknesses, and opportunities for improvement. Once the exercise was complete, the consultant and crisis management team held a debrief session to capture feedback. A summary report was produced with recommended actions for improvement.

An updated contingency plan can be found in Appendix P. This plan will also be submitted to the Local Emergency Management Coordinator.

10. Financial Assurance Update

Updated reclamation costs were submitted to the Department for review March 6, 2023. Eagle Mine understands that if these costs require updating of the current bond for financial assurance EGLE will notify Eagle Mine.

11. Organizational Information

An updated organization report can be found in Appendix Q.

Appendix A

Humboldt Mill

Site Map

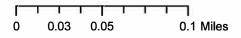
Eagle Mine LLC Humboldt Mill Monitoring Map

Legend

- Cut De Wa Eagle Mine LLC Ownership Nimpolat Mill Part 652 Were
- na Oré Moraga B CHURTY CHUR 10 - UPPCO Powentat - Concentrator E-Concentrate Loadon 0 - Mill Services Duilding

Advances Transmission (Street

11 - Humboldt Tarrings Disposes Facility 12 - Transfer Building 15 - Guiù Storage Duilding 7 - Tailings Pump House

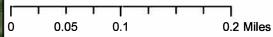

Humboldt Mill **Buildings and Features**

- Public Land Survey Sections
- Humboldt Mill Buildings and Features
- Roads
- ---- Rail
- ······ Culvert
- ----- Stormwater Drain
 - Topographic Contours
- Monitoring Well Locations
- 0 Catch Basin
- 24 Mini Pit
- 25 Coarse Ore Storage Area / Primary
- Crusher Building

- 26 Admin Building 27 Cold Storage Building 28 Stormwater Detention Pond
- 29 Mill Septic System Area
- 30 Old Crusher Building 31- Secondary and Tertiary Crushing Building
- 32 Transfer Building
- 33 Mill Services Building
- 34 Concentrate Building
- 35 -Concentrate Load-Out Building
- 36 Uppco Substation
- 36 Oppco Substation
 37 Security Building
 38 Humboldt Tailings Disposal Facility
 39 Water Treatment Plant (WTP)
 40 WTP Intake Buildings and
 Reagent Storage
 41 Reclaim Water Tank
 42 Fire Water Tank

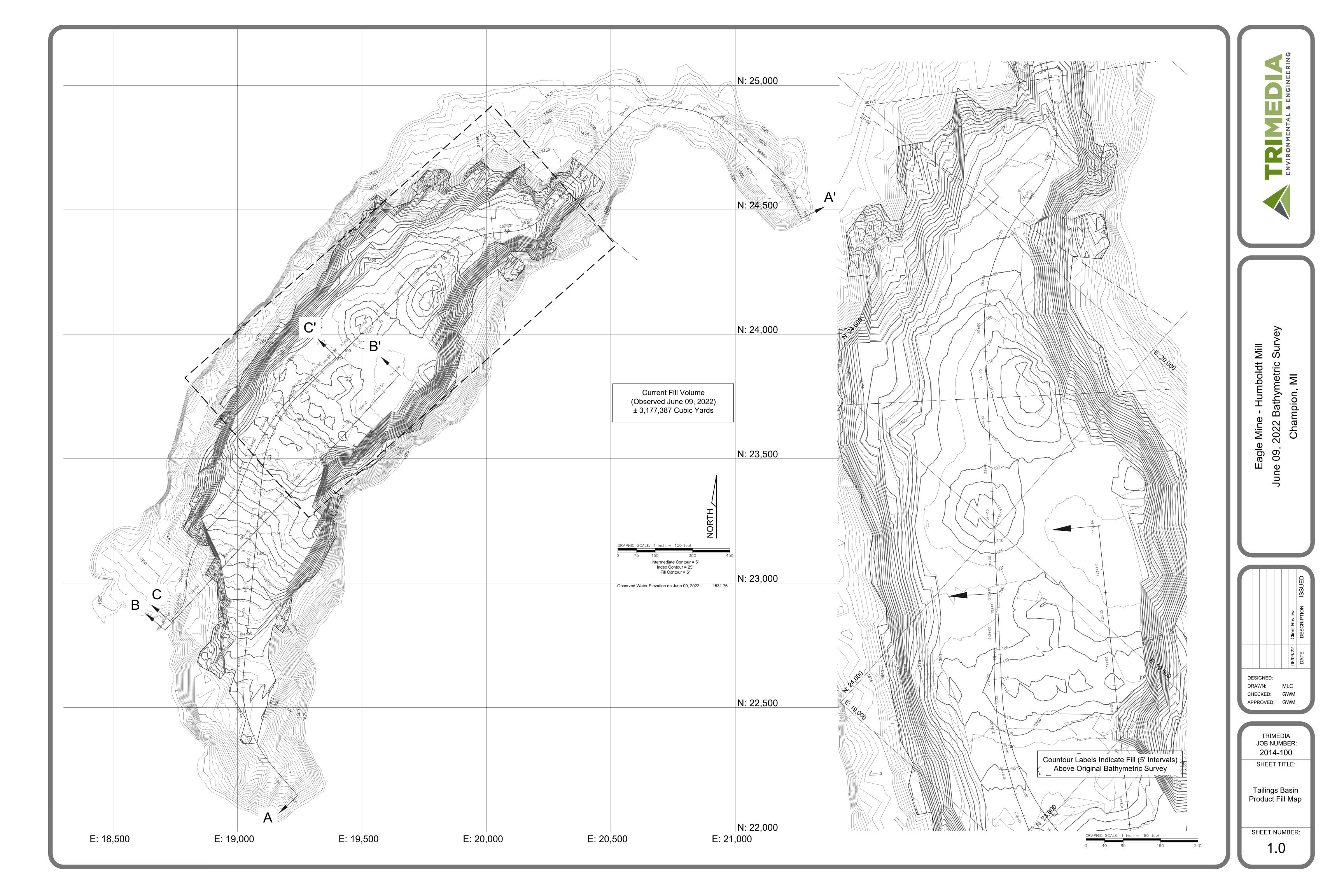
- 42 Fire Water Tank
- 43 Thickeners
- 44 Transfer Building
- 45 Shore Vault
- 46 River Intake Building
- 47 Water Treatment Outfall #1
- 48 Water Treatment Outfall #3
- 49 Water Treatment Outfall #4
- 50 COSA Diesel Fuel Storage

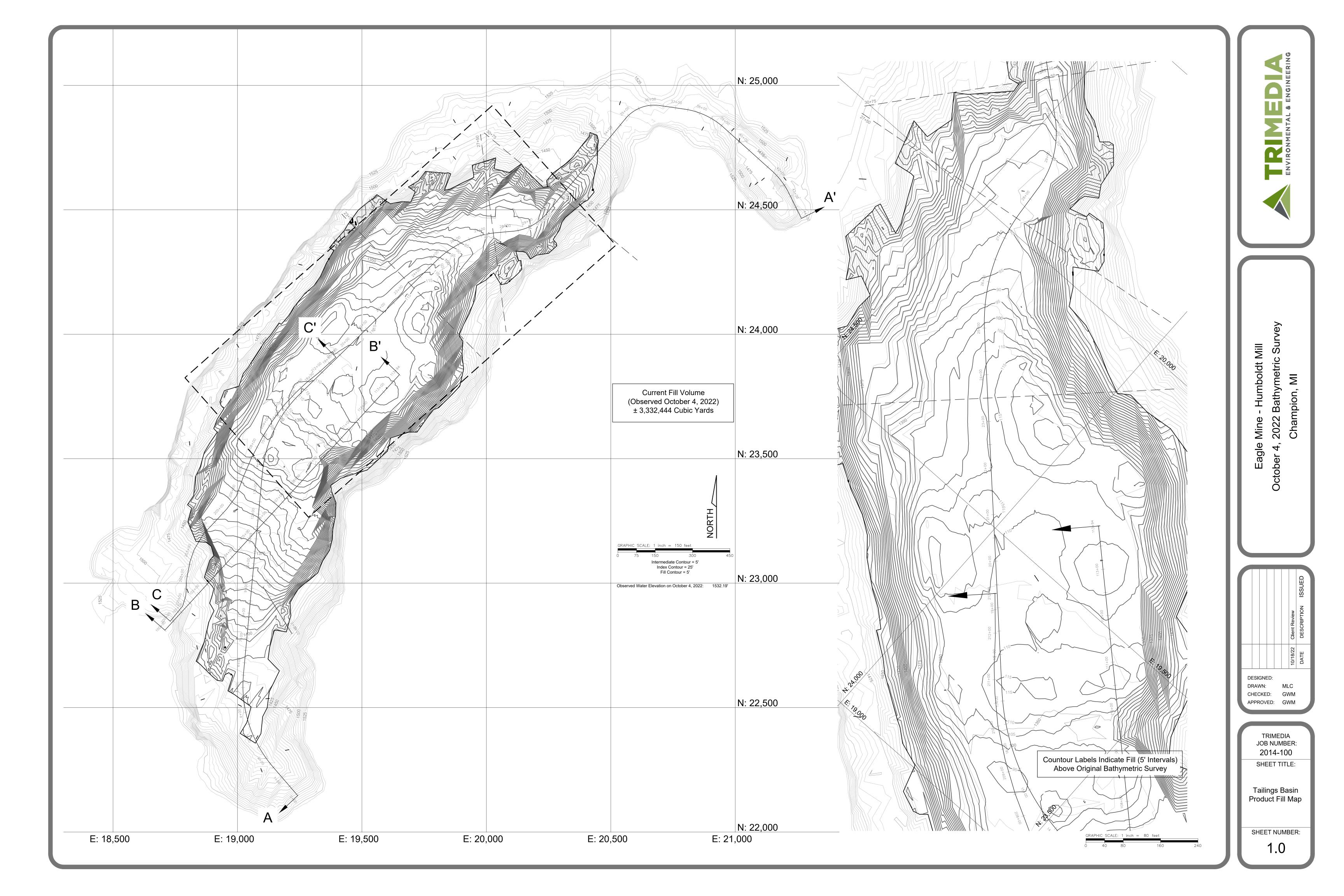
Humboldt Mill **Buildings and Features**

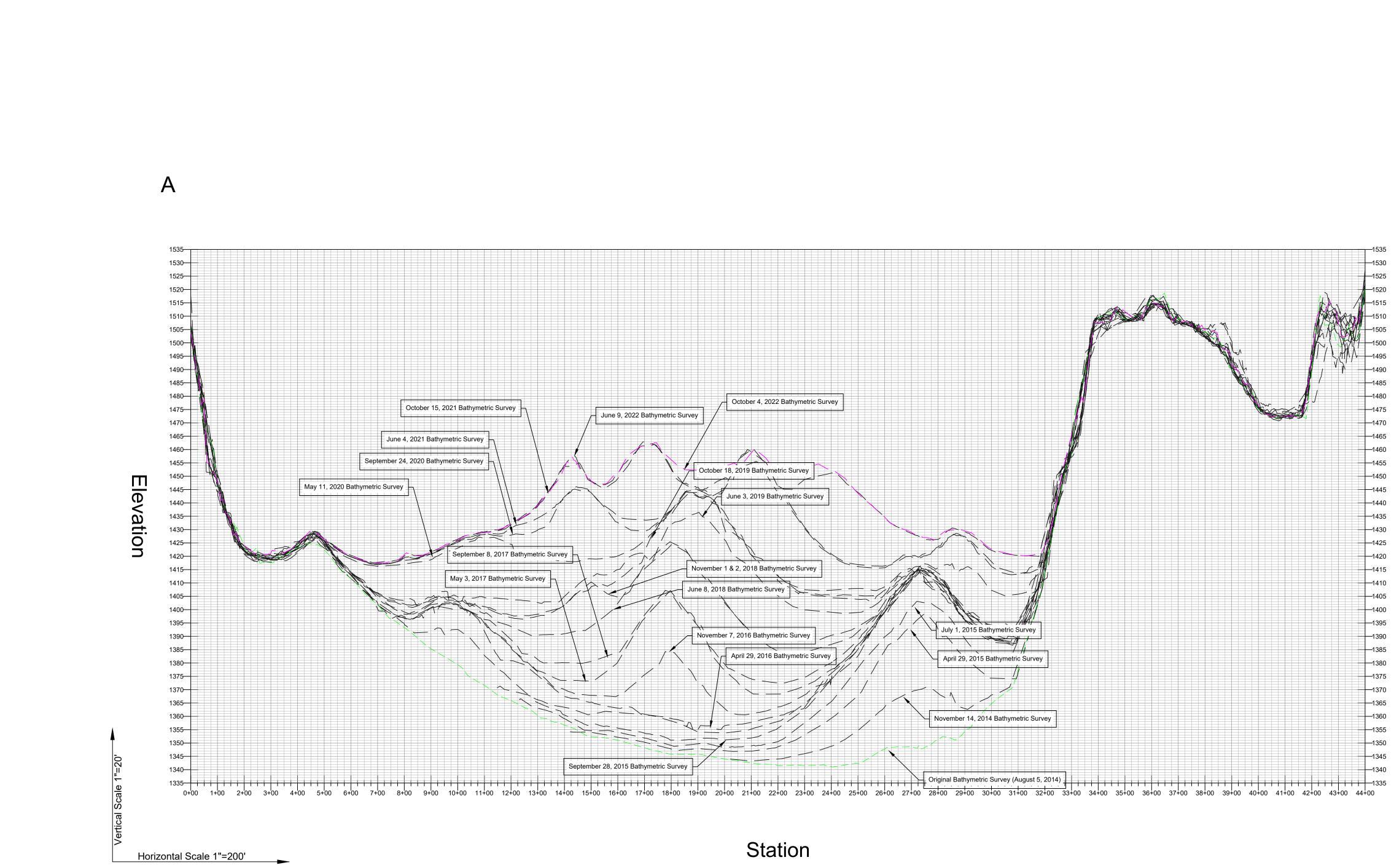

- Public Land Survey Sections
- Humboldt Mill Buildings and Features
- Roads
- ----- Rail
- ······ Culvert
- ----- Stormwater Drain
 - Topographic Contours
- Monitoring Well Locations
- ο Catch Basin
- 24 Mini Pit
- 24 Mini Pit
 25 Coarse Ore Storage Area / Primary
 Crusher Building
 26 Admin Building
 27 Cold Storage Building
 28 Stormwater Detention Pond
 29 Mill Septic System Area
 20 Old Crusher Building

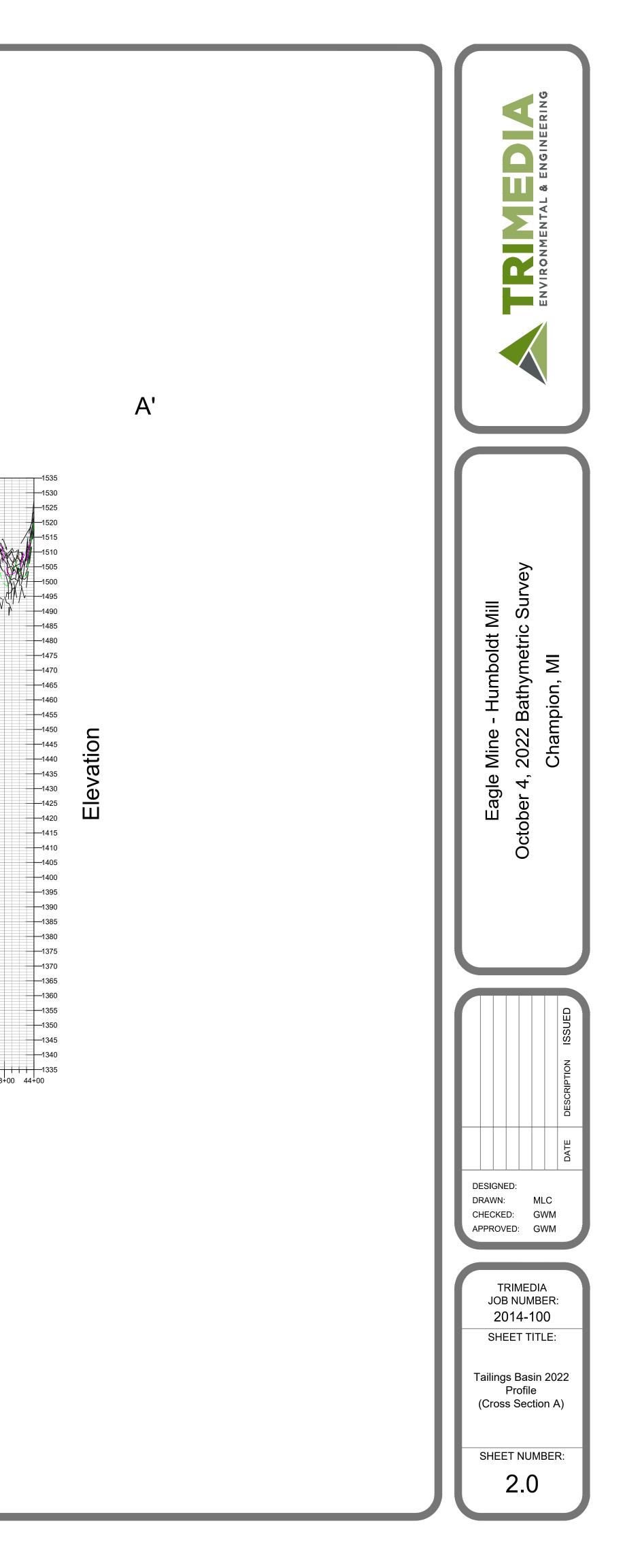
30 - Old Crusher Building 31- Secondary and Tertiary Crushing Building

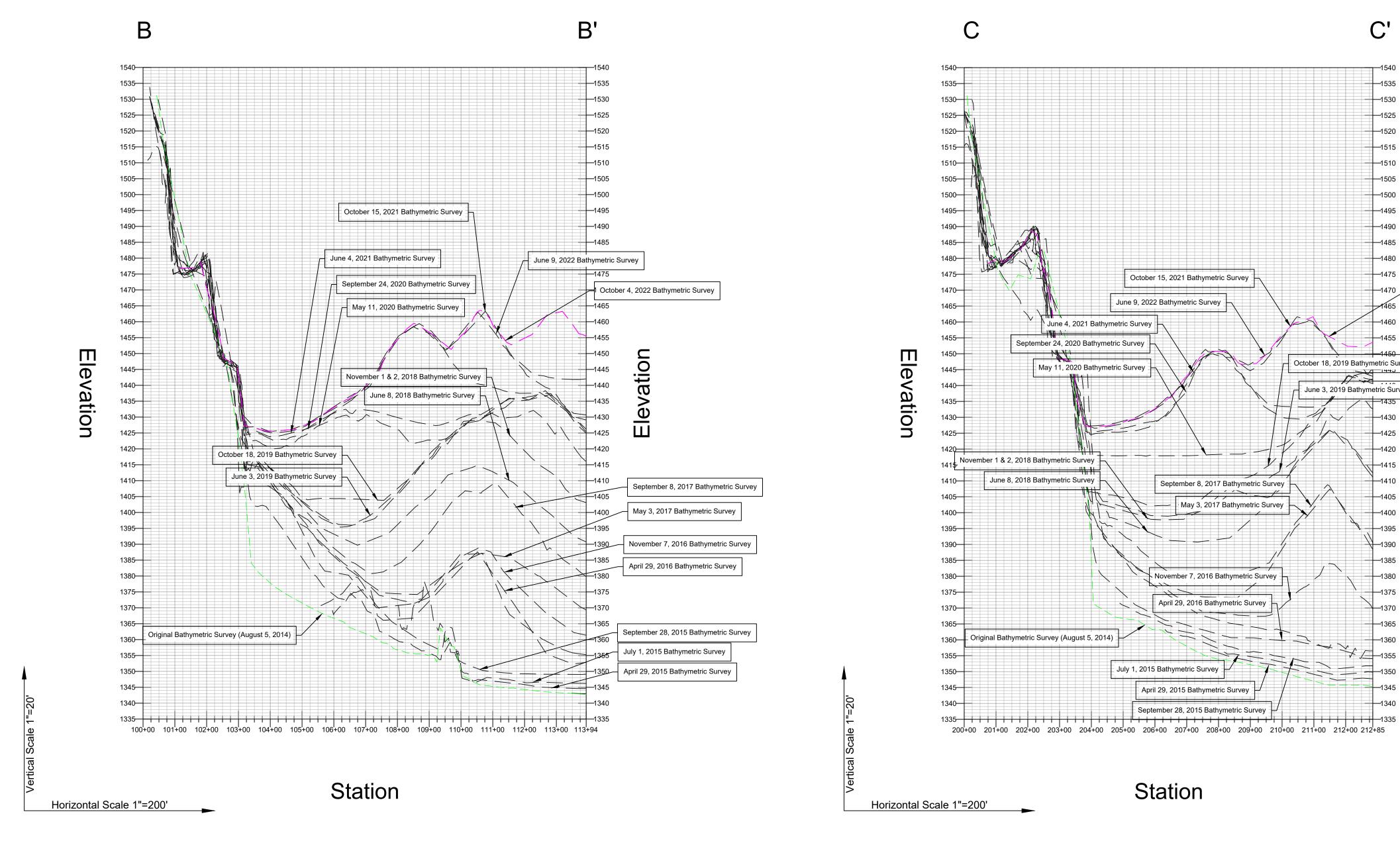
- 32 Transfer Building
- 33 Mill Services Building

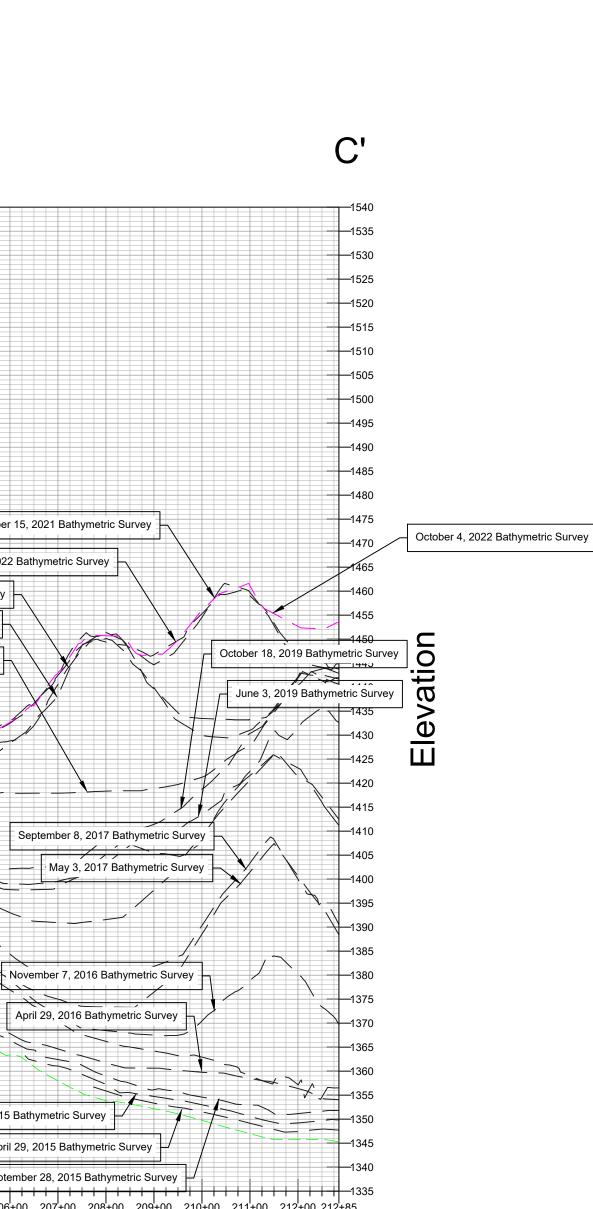

- 33 Mill Services Building
 34 Concentrate Building
 35 -Concentrate Load-Out Building
 36 Uppco Substation
 37 Security Building
 38 Humboldt Tailings Disposal Facility
 39 Water Treatment Plant (WTP)
 40 WTP Intake Buildings and

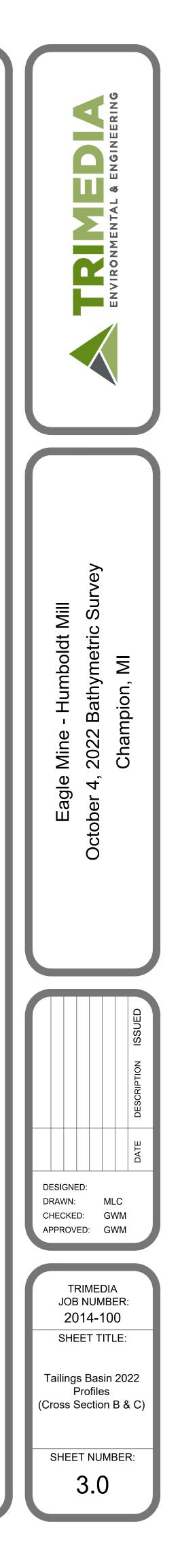

- Reagent Storage 41 Reclaim Water Tank
- 42 Fire Water Tank
- 43 Thickeners
- 44 Transfer Building
- 45 Shore Vault
- 46 River Intake Building47 Water Treatment Outfall #1
- 48 Water Treatment Outfall #3
- 49 Water Treatment Outfall #4
- 50 COSA Diesel Fuel Storage

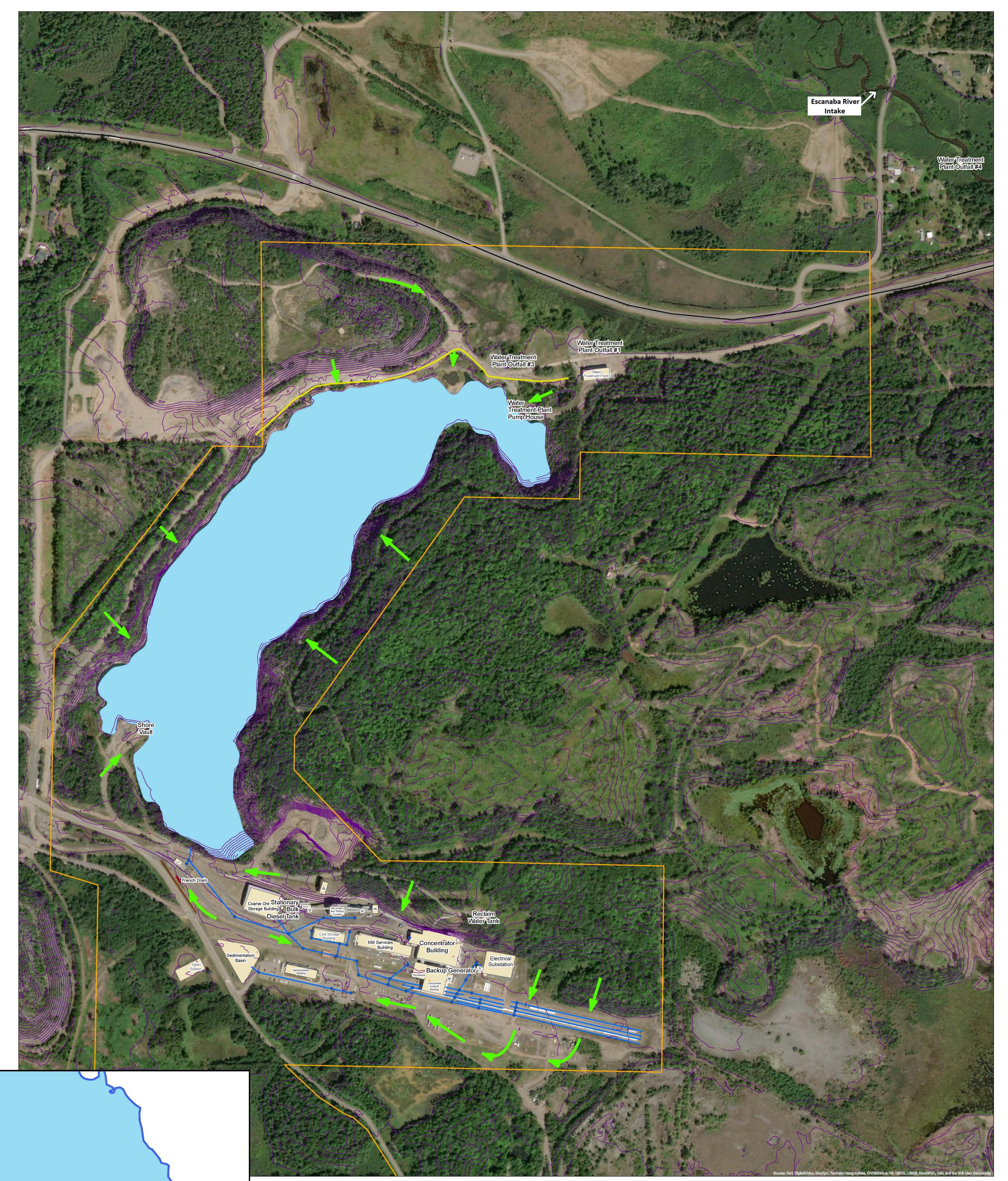



Appendix B

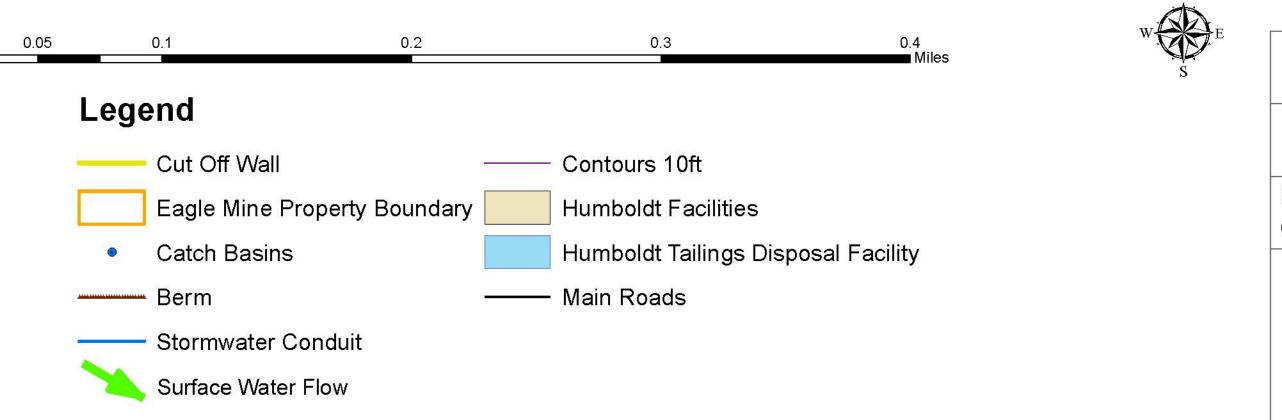

Humboldt Mill Bathymetry Maps







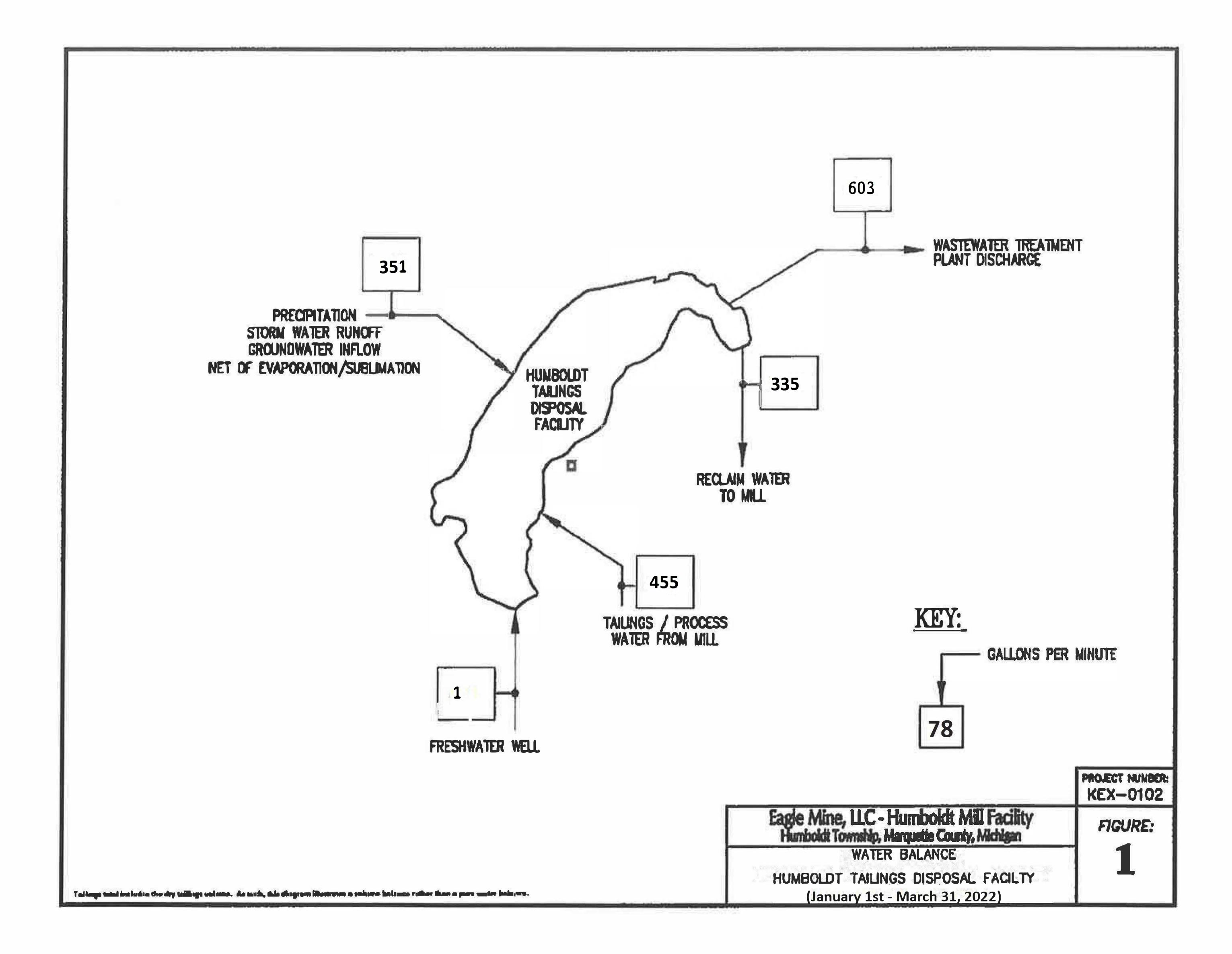
Appendix C

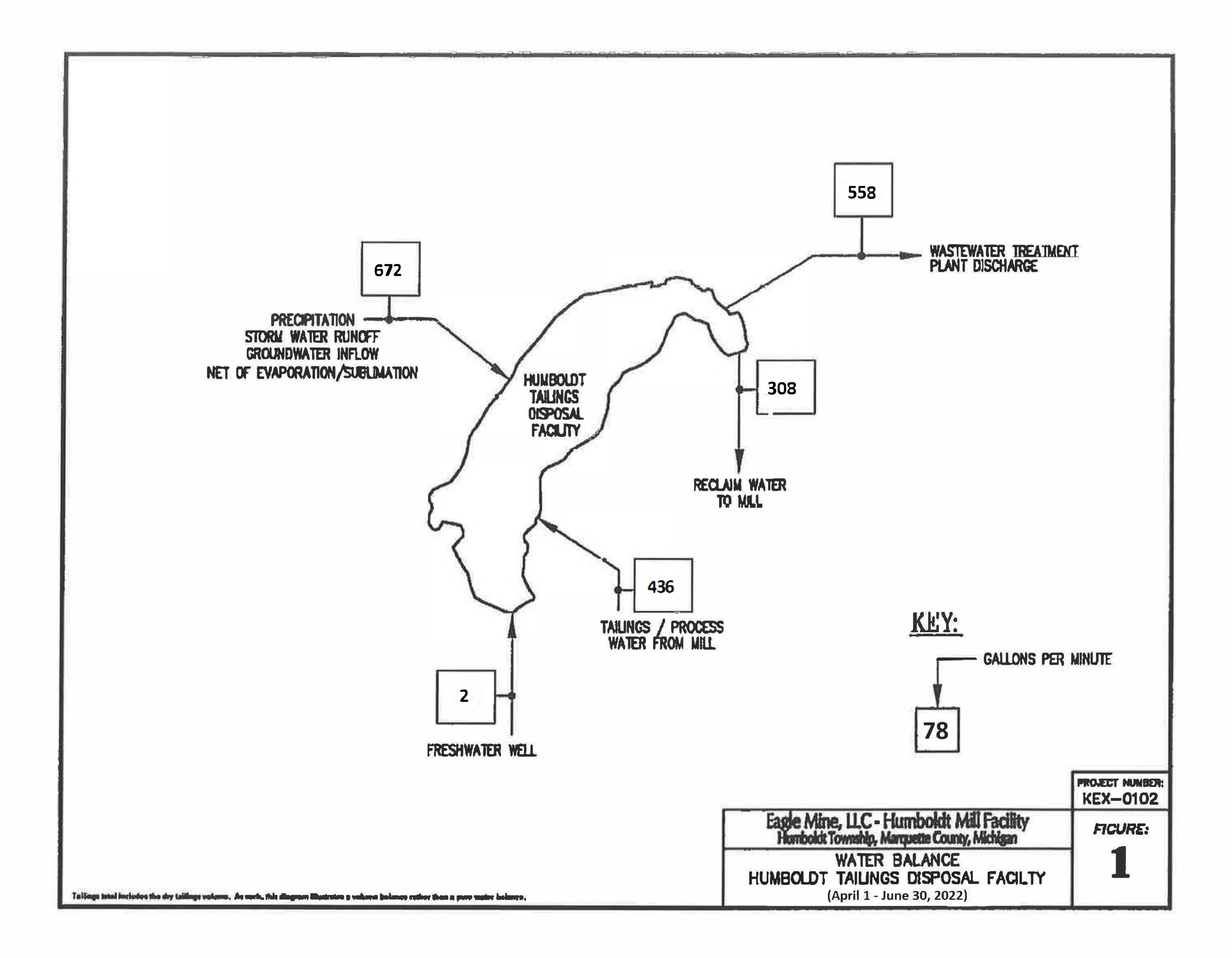

Humboldt Mill

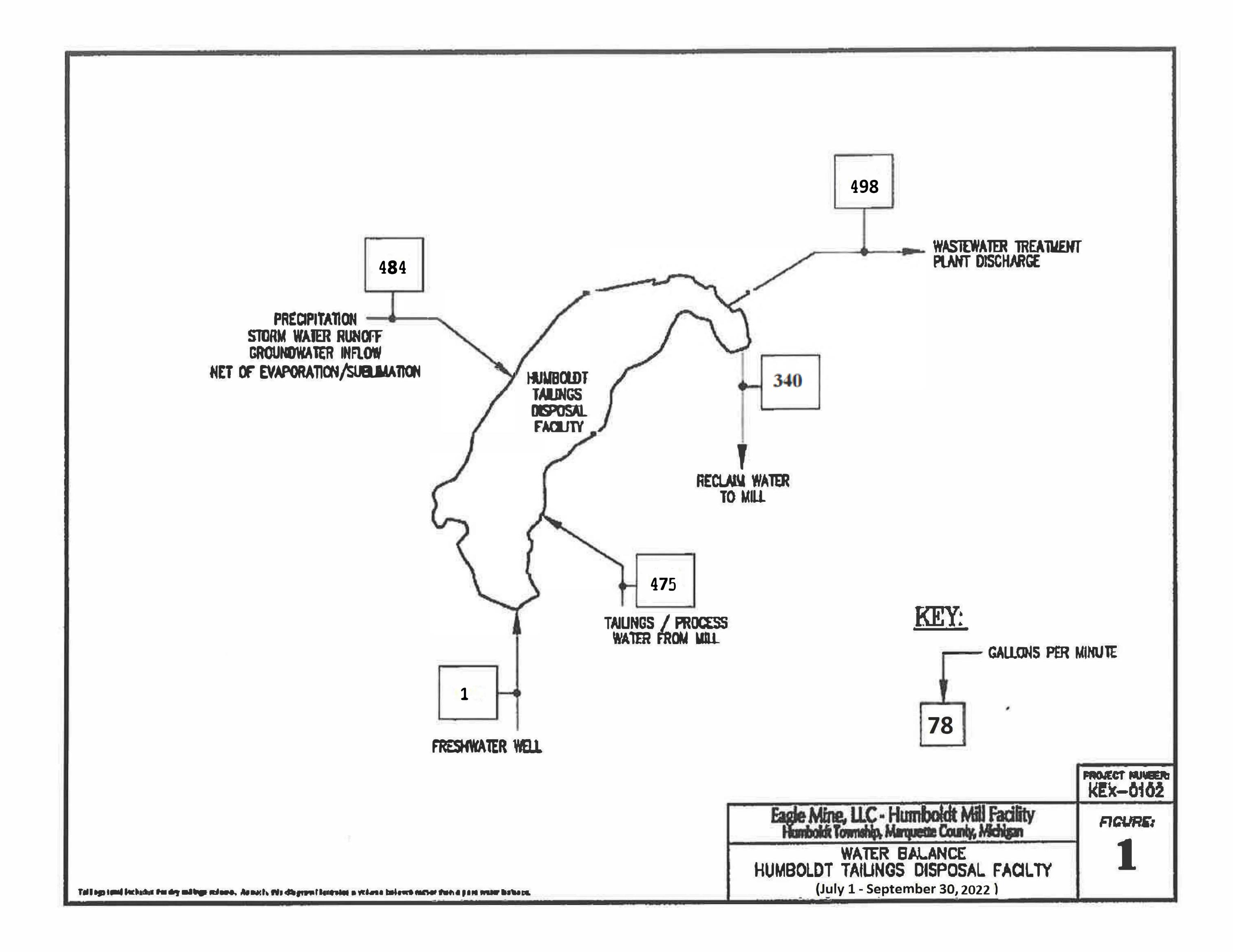
Storm Water Drainage Map

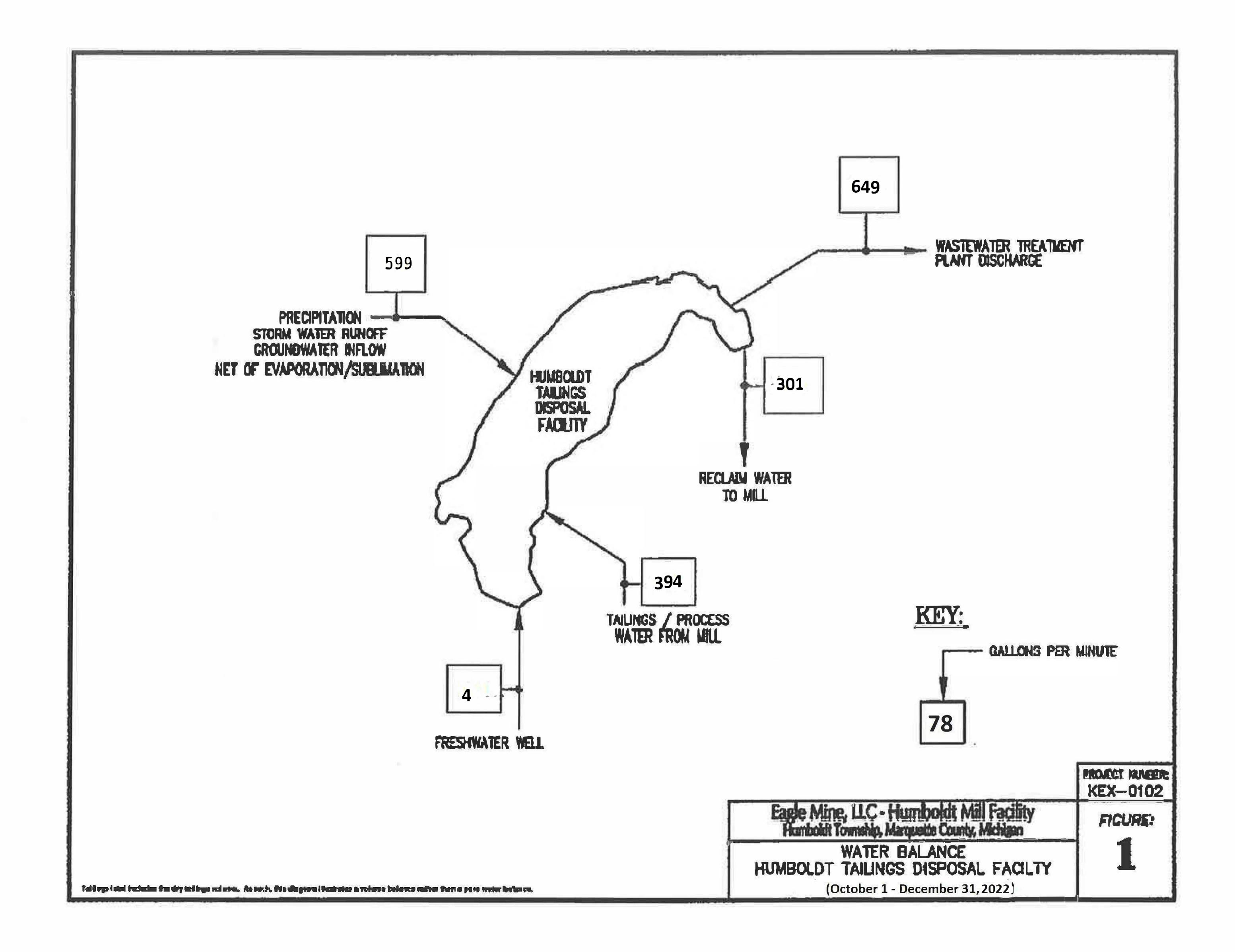
Marquette Marquette See Detail Above for Humboldt Mill (Inset)

0

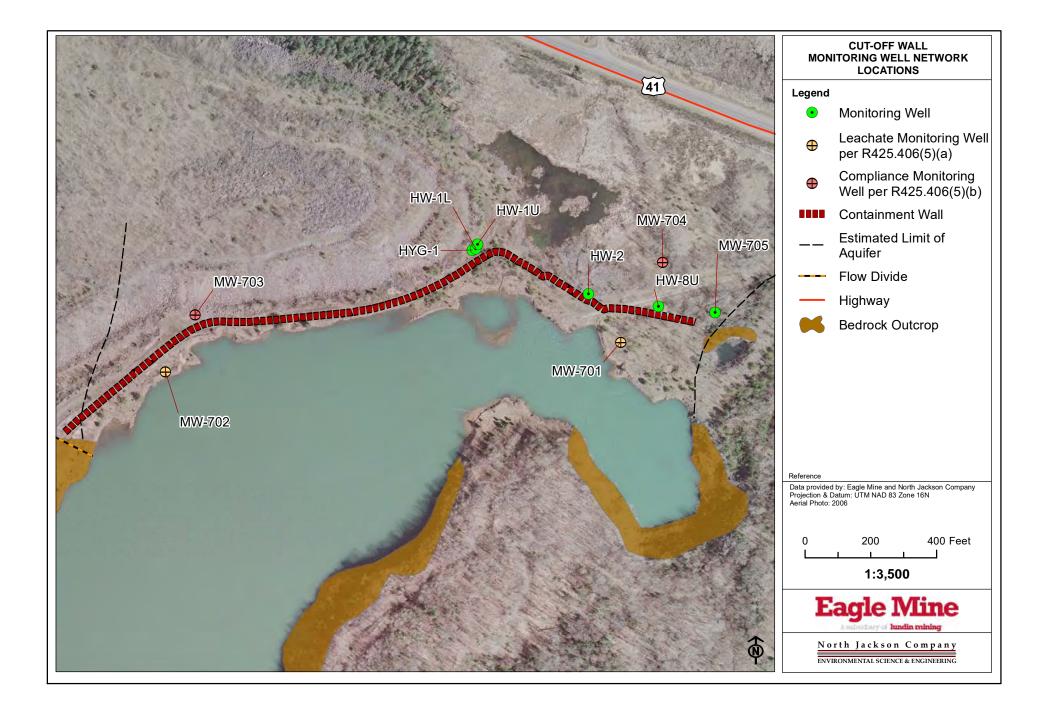

Figure 1
Edited on November 2, 2018 Created on October 9, 2015 on UTM Zone 16N NAD83

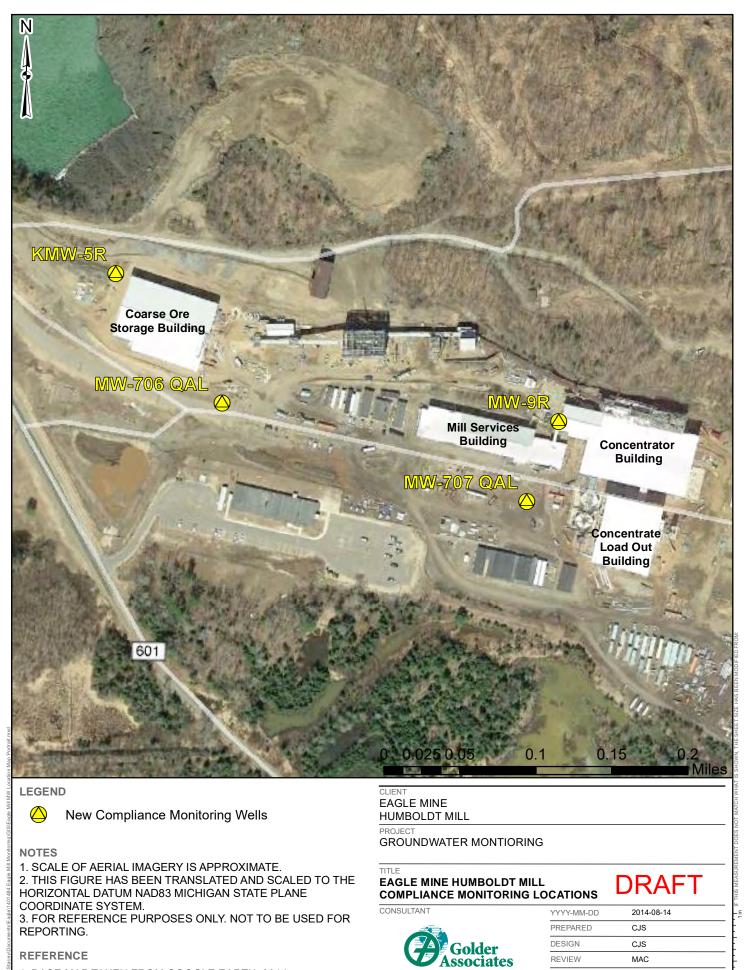

Appendix D


Humboldt Mill


2022

Water Balance Diagrams





Appendix E

Humboldt Mill

Groundwater Map

1. BASE MAP TAKEN FROM GOOGLE EARTH, 2014

PROJECT 1401484

FIGURE

01

GJD

Rev. 0

APPROVED

Appendix F

Humboldt Mill

Groundwater Monitoring Well Results

&

Benchmark Summary Table

Humboldt Mill
2022 Mine Permit Groundwater Monitoring
Benchmark Comparison Summary

			Benchmark Comparison S	annary	
Location	Location Classification	Q1	Q2	Q3	Q4
HW-1L	Monitoring	iron	NM	sulfate	NM
HW-1U LLA	Monitoring	chloride	NM	ammonia	NM
HW-1U UFB	Monitoring	calcium	pH, manganese	pH, iron ,manganese, alkalinity bicarbonate, calcium, hardness	pH, manganese, alkalinity bicarbonate, calciun
HW-2	Monitoring				
HW-8U	Monitoring	pH, iron, manganese, chloride , calcium, potassium, sodium , hardness	iron, manganese , alkalinity bicarbonate, chloride, calcium,	iron, manganese, chloride , calcium, potassium, sodium , hardness	iron, chloride, calcium, potassium, sodium, hardness
HYG-1	Monitoring	manganese	potassium, sodium, manganese, mercury	antimony, manganese, ammonia, nitrate	manganese, ammonia
KMW-5R	Monitoring	sodium	pH, sodium	pH, aluminum, sodium	sodium
MW-701 QAL	Monitoring	chloride, nitrate, sulfate, sodium	pH, chloride, nitrate, sulfate, sodium	mercury, alkalinity bicarbonate, chloride, nitrate, sulfate, sodium	alkalinity bicarbonate, chloride, nitrate, sulfate, sodium
MW-701 UFB	Monitoring	iron, chloride, sulfate, calcium, magnesium, sodium, hardness	iron, alkalinity bicarbonate, chloride, sulfate, calcium, magnesium, sodium, hardness	iron, chloride, sulfate, calcium, magnesium, hardness	sulfate, calcium, magnesium, hardness
MW-702 QAL	Monitoring	mercury	pH, mercury	pH, mercury	mercury
MW-702 UFB	Monitoring				
MW-703 QAL	Monitoring	pH, nitrate, sulfate	pH, nitrate	pH, nitrate	pH, nitrate
MW-703 UFB	Monitoring	sulfate		sulfate	
MW-703 LLA	Monitoring	sulfate			
MW-703-DBA	Monitoring	sulfate	рН	alkalinity bicarbonate, calcium	
MW-704 QAL	Monitoring		chloride, ammonia	chloride	
MW-704 UFB	Monitoring	chloride, sulfide	chloride	chloride	chloride
MW-704 LLA	Monitoring	pH, manganese, alkalinity bicarbonate, chloride, calcium, magnesium, hardness	pH, iron, manganese, alkalinity bicarbonate, chloride, calcium, magnesium, hardness	pH, iron, manganese, chloride, calcium, magnesium, hardness	pH, iron, manganese, alkalinity bicarbonate, chloride, calcium, magnesium,
MW-704 DBA	Monitoring		alkalinity bicarbonate	manganese, hardness	hardness alkalinity bicarbonate
MW-705 QAL	Monitoring	ammonia, sulfate, sodium	chloride, ammonia, sodium	chloride, ammonia, sodium	chloride, ammonia, sodium
MW-705 UFB	Monitoring	iron, manganese, chloride, calcium, magnesium, potassium, sodium, hardness	manganese, alkalinity bicarbonate, chloride, calcium, magnesium, sodium, hardness	manganese, chloride, calcium, magnesium, sodium, hardness	manganese, chloride, calcium, magnesium, sodium, hardness
MW-706 QAL	Monitoring		рН	рН	
MW-707 QAL	Monitoring			alkalinity bicarbonate	ammonia
MW-9R	Monitoring	pH, copper, iron, manganese, nickel, zinc, sulfate, calcium, magnesium, potassium, hardness		zinc	

Parameters listed in this table had values reported that were equal to or greater than a site-specific benchmark. Parameters in **BOLD** are instances in which the Department was notified because benchmark deviations were identified at compliance monitoring locations for two consecutive quarters. N/A means there were no parameters outside of benchmark values for that quarter. If the location is classified as background, Department notification is not required for an exceedance.

Blank data cells indicate that no benchmark deviations occurred at the location during the specified sampling quarter.

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data HW-1L (Monitoring)

		HW-1	LL (Monitoring)			
		Recommended			T	т
Parameter	Unit	Benchmark 2018	Q1 2022 ^D	Q2 2022 ^D	Q3 2022 ^T	Q4 2022 ^T
Field						
D.O.	ppm	-	0.96	NM	0.59	NM
ORP	mV	-	-304	NM	-254	NM
рН	SU	8.14-9.14	8.2	NM	8.3	NM
Specific Conductance	uS/cm	-	381	NM	310	NM
Temperature	С	-	7.7	NM	9.9	NM
Turbidity	NTU	-	2.3	NM	13	NM
Water Elevation	ft MSL	-	1444.67	1444.74	1444.70	1507.42
Metals						
Aluminum	ug/L	200	-	NM	< 50.0	NM
Antimony	ug/L	4.0	-	NM	< 2.0	NM
Arsenic	ug/L	7.5	< 5.0	NM	< 5.0	NM
Barium	ug/L	400	-	NM	< 100	NM
Beryllium	ug/L	2.5	-	NM	< 1.0	NM
Boron	ug/L	745	-	NM	610	NM
Cadmium	ug/L	3.0	-	NM	< 1.0	NM
Chromium	ug/L	40	-	NM	< 10.0	NM
Cobalt	ug/L	80	-	NM	< 20.0	NM
Copper	ug/L	16	< 4.0	NM	< 4.0	NM
Iron	ug/L	1187	1230	NM	854	NM
Lead	ug/L	9.0	< 3.0	NM	< 3.0	NM
Lithium	ug/L	23.0	-	NM	21	NM
Manganese	ug/L	200	60	NM	< 50.0	NM
Mercury	ng/L	4.0	< 1.0	NM	< 1.0	NM
Molybdenum	ug/L	200	-	NM	< 50.0	NM
Nickel	ug/L	80	< 20.0	NM	< 20.0	NM
Selenium	ug/L	20	-	NM	< 5.0	NM
Silver	ug/L	0.8		NM	< 0.20	NM
Thallium	ug/L	2.0		NM	< 2.0	NM
Vanadium	ug/L ug/L	-	-	NM	-	NM
Zinc		40	< 10.0	NM	< 10.0	NM
Major Anions	ug/L	40	< 10.0		< 10.0	INIVI
Alkalinity, Bicarbonate	mg/l	109.1	84	NM	92	NM
Alkalinity, Carbonate	mg/L	7.8	< 2.0	NM	1.5	NM
	mg/L				42	
Chloride	mg/L	57.2	44	NM		NM
Fluoride	mg/L	2.5	< 1.0	NM	< 1.0	NM
Nitrogen, Ammonia	mg/L	0.1	<0.025	NM	<0.025	NM
Nitrogen, Nitrate	mg/L	0.4	<0.1	NM	<0.1	NM
Nitrogen, Nitrite	mg/L	0.4	<0.1	NM	<0.1	NM
Sulfate	mg/L	33	32	NM	35	NM
Sulfide	mg/L	0.8	< 0.20	NM	< 0.20	NM
Major Cations						
Calcium	mg/L	34	28	NM	29	NM
Magnesium	mg/L	15	11	NM	12	NM
Potassium	mg/L	6	< 2.3	NM	1.8	NM
Sodium	mg/L	28	24	NM	23	NM
General						
Hardness	mg/L	156	117	NM	120	NM

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data HW-1U LLA (Monitoring)

		HW-10	J LLA (Monitoring)			
		Recommended		-	_	
Parameter	Unit	Benchmark 2018	Q1 2022 ^D	Q2 2022 ^T	Q3 2022 ^T	Q4 2022 ^D
Field						
D.O.	ppm	-	0.99	NM	0.61	NM
ORP	mV	-	-304	NM	-261	NM
рН	SU	8.06-9.06	8.2	NM	8.2	NM
Specific Conductance	uS/cm	-	577	NM	396	NM
Temperature	С	-	6.1	NM	10	NM
Turbidity	NTU	-	12	NM	11	NM
Water Elevation	ft MSL	-	1472.82	1471.50	1472.89	1472.18
Metals						
Aluminum	ug/L	200	-	NM	<50.0	NM
Antimony	ug/L	4.0	-	NM	<2.0	NM
Arsenic	ug/L	9.6	<5.0	NM	<5.0	NM
Barium	ug/L	400	-	NM	<100	NM
Beryllium	ug/L	2.5	-	NM	<1.0	NM
Boron	ug/L	1200	-	NM	<300	NM
Cadmium	ug/L	3.0	-	NM	<1.0	NM
Chromium	ug/L	40	-	NM	<10.0	NM
Cobalt	ug/L	80	-	NM	<20.0	NM
Copper	ug/L	8.6	<4.0	NM	<4.0	NM
Iron	ug/L	56770	845	NM	834	NM
Lead	ug/L	15.0	<3.0	NM	<3.0	NM
Lithium	ug/L	17.4	-	NM	13	NM
Manganese	ug/L	673	62	NM	56	NM
Mercury	ng/L	14.2	< 1.0	NM	< 1.0	NM
Molybdenum	ug/L	200	. 1.0	NM	< 50.0	NM
Nickel	ug/L	80	< 20.0	NM	< 20.0	NM
Selenium	ug/L	20	-	NM	<5.0	NM
Silver	ug/L	0.80	-	NM	<0.20	NM
Thallium	ug/L	2.0	-	NM	<2.0	NM
Vanadium	ug/L	-	-	NM	-	NM
Zinc	ug/L	44.2	<10.0	NM	<10.0	NM
Major Anions	46/ L	77.2	.10.0		10.0	
Alkalinity, Bicarbonate	mg/L	157	101	NM	120	NM
Alkalinity, Carbonate	mg/L	64.2	< 2.0	NM	2.0	NM
Chloride	mg/L	61	65	NM	44	NM
Fluoride	mg/L	2.5	<1.0	NM	<1.0	NM
Nitrogen, Ammonia	mg/L	0.30	0.12	NM	0.44	NM
Nitrogen, Nitrate	mg/L	0.57	<0.12	NM	<0.1	NM
Nitrogen, Nitrite	mg/L	0.78	<0.1	NM	<0.1	NM
Sulfate	mg/L	395	67	NM	66	NM
Sulfide	mg/L	0.80	< 0.20	NM	<0.20	NM
Major Cations	iiig/L	0.00	< 0.20		<u>\0.20</u>	
Calcium	mg/L	61	38	NM	41	NM
	_	26	38 12	NM	41 14	
Magnesium	mg/L					NM
Potassium	mg/L	16.9	4.1	NM	3.6	NM
Sodium	mg/L	134	49	NM	29	NM
General		171	142	NIN 4	150	NIN 4
Hardness	mg/L	171	143	NM	159	NM

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data HW-1U UFB (Monitoring)

	Recommended				
Unit	Benchmark 2018	Q1 2022 ^D	Q2 2022 ^D	Q3 2022 ^D	Q4 2022 ^D
ppm	-	0.87	0.34	0.02	0.16
mV	-	-391	-317	-316	-341
	8.4-9.4				8.3
uS/cm	-	489	221	309	216
-	-				8.2
NTU	-	4.1	25	17	15
-	-	1533.94		1535.28	1535.16
ug/L	200	-	-	<50.0	-
	4.0	-	-	<2.0	-
		< 5.0	< 5.0		<5.0
					-
		-	-		-
	1200	-	-	<300	-
		-	-		-
		-	-		-
		-	-		-
			<4.0		<4.0
					2550
					<3.0
		-	-		-
		67	94		85
					<1.0
		-	-		-
		<20.0	<20.0		<20.0
		-	-		-
		-	-		-
		-	-		-
	-	-	-	-	-
	40	<10.0	<10.0	<10.0	<10.0
0,					
mg/L	122	101	110	170	136
					1.7
					<10.0
					<1.0
					< 0.03
	0.4				<0.10
	0.4				<0.10
					4.2
					<0.20
			-	-	-
mg/L	34	34	30	48	41
					5.6
					4.7
					5.8
mg/l	147	119	102	153	126
	ppm	ppm - mV - SU 8.4-9.4 uS/cm - C - NTU - ft MSL - ug/L 200 ug/L 9.3 ug/L 9.3 ug/L 4.0 ug/L 2.5 ug/L 3.0 ug/L 3.0 ug/L 80 ug/L 9.0 ug/L 16.7 ug/L 9.0 ug/L 80 ug/L 200 ug/L 80 ug/L 80 ug/L 2.0 ug/L 80 ug/L 80 ug/L 2.0 ug/L 80 ug/L 80 ug/L 0.80 ug/L 2.0 ug/L 0.40 ug/L 0.40 ug/L 0.40	ppm - 0.87 mV - -391 SU 8.4 -9.4 8.4 uS/cm - 489 C - 7.1 NTU - 4.1 ft MSL - 1533.94 ug/L 200 - ug/L 9.3 < 5.0	ppm - 0.87 0.34 mV - -391 -317 SU 8.4-9.4 8.4 8.0 uS/cm - 489 221 C - 7.1 8.2 NTU - 4.1 25 ft MSL - 1533.94 1535.38 ug/L 200 - - ug/L 4.0 - - ug/L 9.3 <5.0	ppm - 0.87 0.34 0.02 mV - -391 -317 -316 SU 8.4-9.4 8.4 8.0 8.1 uS/cm - 489 221 309 C - 7.1 8.2 9.3 NTU - 4.1 25 17 ft MSL - 1533.94 1535.38 1535.28 ug/L 200 - - <<50.0

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data HW-2 (Monitoring)

		HW-	-2 (Monitoring)			
		Recommended	04.2022 ^D	on nonn ^D		o t accas ^D
Parameter	Unit	Benchmark 2018	Q1 2022 ^D	Q2 2022 ^D	Q3 2022 ^D	Q4 2022 ^D
Field						
D.O.	ppm	-	0.30	0.50	0.61	0.20
ORP	mV	-	-221	-211	-225	-234
рН	SU	7.29-8.29	8.2	7.7	7.8	8.1
Specific Conductance	uS/cm	-	275	262	214	202
Temperature	С	-	7.6	9.2	9.3	8.4
Turbidity	NTU	-	30	37	41	79
Water Elevation	ft MSL	-	1532.38	1533.75	1534.18	1533.77
Metals						
Aluminum	ug/L	200	-	-	<50.0	-
Antimony	ug/L	4.0	-	-	<2.0	-
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0
Barium	ug/L	400	-	-	<100	-
Beryllium	ug/L	2.5	-	-	<1.0	-
Boron	ug/L	1200	-	-	<300	-
Cadmium	ug/L	3.0	-	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	80	-	-	<20.0	-
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0
Iron	ug/L	2595	354	940	1040	823
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	40	-	-	<10.0	-
Manganese	ug/L	333	159	211	176	154
Mercury	ng/L	4.0	<1.0	<1.0	<1.0	<1.0
Molybdenum	ug/L	200	-	-	<50.0	-
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0
Selenium	ug/L	20	-	-	<5.0	-
Silver	ug/L	0.80	-	-	<0.20	-
Thallium	ug/L	2.0	-	-	<2.0	-
Vanadium	ug/L	-	-	-	-	
Zinc		40	<10.0	<10.0	<10.0	<10.0
Major Anions	ug/L	40	<10.0	<10.0	<10.0	<10.0
Alkalinity, Bicarbonate	mg/l	141	95	101	110	97
	mg/L		<2.0			
Alkalinity, Carbonate	mg/L	8.0		<2.0	2.2	<2.0
Chloride	mg/L	35	13	12	13	12
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0
Nitrogen, Ammonia	mg/L	0.08	<0.03	< 0.03	0.03	<0.03
Nitrogen, Nitrate	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	175	28	24	18	15
Sulfide	mg/L	0.52	<0.20	<0.20	<0.20	0.22
Major Cations						
Calcium	mg/L	72	23	23	24	23
Magnesium	mg/L	26	9	9	9	8.3
Potassium	mg/L	6	2.7	2.8	2.6	2.6
Sodium	mg/L	30	19	17	15	15
General						
Hardness	mg/L	297	97	97	95	92

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data HW-8U (Monitoring)

	_	HW-8	BU (Monitoring)			
		Recommended	D	Ŧ	-	Ŧ
Parameter	Unit	Benchmark 2018	Q1 2022 ^D	Q2 2022 ^T	Q3 2022 ^T	Q4 2022 ^T
Field						
D.O.	ppm	-	1.3	0.70	0.94	0.16
ORP	mV	-	-209	-193	0	-230
рН	SU	6.4-7.4	10.0	6.9	7.1	7.4
Specific Conductance	uS/cm	-	606	534	469	467
Temperature	С	-	7.6	9.1	9.7	8.8
Turbidity	NTU	-	4.3	3.0	3.0	0.93
Water Elevation	ft MSL	-	1532.63	1536.13	1534.56	1534.41
Metals						
Aluminum	ug/L	200	-	-	<50.0	-
Antimony	ug/L	4	-	-	<2.0	-
Arsenic	ug/L	8.8	5.5	<5.0	5.2	5.9
Barium	ug/L	400	-	-	<100	-
Beryllium	ug/L	2.5	-	-	<1.0	-
Boron	ug/L	1200	-	-	<300	-
Cadmium	ug/L	3	-	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	80	-	-	<20.0	-
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0
Iron	ug/L	22049	24600	25700	26300	25400
Lead	ug/L	9	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	14.4	-	-	11	-
Manganese	ug/L	6268	6770	6350	6470	6170
Mercury	ng/L	4	<1.0	<1.0	<1.0	<1.0
Molybdenum	ug/L	200	-	-	<50.0	-
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0
Selenium	ug/L	20	-	-	<5.0	-
Silver	ug/L	0.8	_	-	<0.20	-
Thallium	ug/L	2	_	-	<2.0	-
Vanadium	ug/L	-	-	-	-	-
Zinc	ug/L	26.7	<10.0	<10.0	<10.0	<10.0
Major Anions	····		-2010			
Alkalinity, Bicarbonate	mg/L	214	160	235	180	166
Alkalinity, Carbonate	mg/L	8	<2.0	<2.0	1.5	<2.0
Chloride	mg/L	18	66	66	64	64
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0
Nitrogen, Ammonia	mg/L	0.04	0.03	< 0.03	< 0.03	<0.03
Nitrogen, Nitrate	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	12.3	3.9	2.0	1.8	2.7
Sulfide	mg/L	0.8	<0.20	<0.20	<0.20	<0.20
Major Cations	1116/ L	0.0	\$0.20	\$0.20	\$0.20	\$0.20
Calcium	mg/L	46	59	57	57	57
Magnesium	mg/L	19	15	15	15	15
Potassium		3.6	4.6	4.7	4.6	4.7
Sodium	mg/L	4.3	9.7	4.7	9.6	4.7 9.7
	mg/L	4.5	9.7	10	5.0	5.7
General	mall	203	210	205	206	206
Hardness	mg/L	203	210	205	200	200

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data HYG-1 (Monitoring)

	_	HYG	-1 (Monitoring)			
		Recommended				
Parameter	Unit	Benchmark 2018	Q1 2022 ^T	Q2 2022 ^T	Q3 2022 ^T	Q4 2022 ^T
Field						
D.O.	ppm	-	0.30	0.44	0.63	0.21
ORP	mV	-	92	31	72	86
рН	SU	6.29-7.29	6.4	6.3	6.5	6.4
Specific Conductance	uS/cm	-	517	515	348	373
Temperature	C	-	7.2	7.3	8.1	8.5
Turbidity	NTU	-	2.4	2.1	2.4	0.39
Water Elevation	ft MSL	-	1530.72	1531.47	1531.39	1531.05
Metals						
Aluminum	ug/L	200	-	-	<50.0	-
Antimony	ug/L	4.0	-	-	6.4	-
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0
Barium	ug/L	400	-	-	<100	-
Beryllium	ug/L	2.5	-	-	<1.0	-
Boron	ug/L	1200	_	-	<300	-
Cadmium	ug/L	3.0	-	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	80	-	-	<20.0	-
Copper	ug/L	9.2	<4.0	<4.0	<4.0	<4.0
Iron	ug/L	482	<200	<200	<200	<200
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L ug/L	40	<3.0	<3.0	<10.0	<3.0
	ug/L ug/L	627	3820	3240	3040	3020
Manganese Mercury		37.3	24	45	20	9.8
Molybdenum	ng/L	200	- 24	- 45	<50.0	
-	ug/L	80				
Nickel Selenium	ug/L	20	<20.0	<20.0	<20.0 <5.0	<20.0
Silver	ug/L		-	-	<0.20	-
Thallium	ug/L	0.80				
Vanadium	ug/L	2.0	-	-	<2.0	-
	ug/L	-	-	-	-	-
Zinc	ug/L	25.3	<10.0	<10.0	<10.0	<10.0
Major Anions		272	220	246	200	216
Alkalinity, Bicarbonate	mg/L	373	238	246	200	216
Alkalinity, Carbonate	mg/L	8.0	<2.0	<2.0	2.6	<2.0
Chloride	mg/L	22	11	11	<10.0	<10.0
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0
Nitrogen, Ammonia	mg/L	0.56	0.50	0.55	0.71	0.59
Nitrogen, Nitrate	mg/L	0.08	<0.10	<0.10	0.24	<0.10
Nitrogen, Nitrite	mg/L	0.40	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	137	38	37	49	41
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20
Major Cations		65				
Calcium	mg/L	65	52	49	40	45
Magnesium	mg/L	34	21	22	16	18
Potassium	mg/L	13	10	9.7	7.8	8.7
Sodium	mg/L	80	26	25	19	21
General						
Hardness	mg/L	322	217	211	166	187

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data KMW-5R (Monitoring)

		KMW	-5R (Monitoring)			
		Recommended				
Parameter	Unit	Benchmark 2018	Q1 2022 ^D	Q2 2022 ^D	Q3 2022 ^D	Q4 2022 ^D
Field						
D.O.	ppm	-	4.4	4.2	3.1	4.6
ORP	mV	-	8.0	65	320	134
рН	SU	6.67-7.67	7.0	6.4	6.6	6.8
Specific Conductance	uS/cm	-	481	661	606	596
Temperature	C	-	11	9.1	10	8.6
Turbidity	NTU	-	276	171	80	126
Water Elevation	ft MSL	_	1555.97	1561.36	1560.28	1559.98
Metals						
Aluminum	ug/L	200	-	-	379	-
Antimony	ug/L	4	_	-	<2.0	-
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0
Barium	ug/L	400	-	-	<100	-
Beryllium	ug/L	2.5	_	-	<1.0	-
Boron	ug/L	1200	_	-	<300	-
Cadmium	ug/L	3	-	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	80	_	-	<20.0	-
Copper	ug/L	28	5.3	7.1	4.1	6.1
Iron	ug/L	52956	5580	3770	2450	8170
Lead	ug/L	9	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	31	-	-	14	-
Manganese	ug/L	2789	1170	1410	1410	2000
Mercury	ng/L	14.9	2.8	0.81	<1.0	<1.0
Molybdenum	ug/L	200	-	-	<50.0	-
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0
Selenium	ug/L	20	-	-	<5.0	-
Silver	ug/L	0.8	-	-	<0.20	-
Thallium	ug/L	2	-	-	<2.0	-
Vanadium	ug/L	-	-	-	-	-
Zinc	ug/L	23.7	<10.0	12	<10.0	<10.0
Major Anions	ug/ L	23.7	(10.0	12	(10.0	(10.0
Alkalinity, Bicarbonate	mg/L	481	380	366	430	422
Alkalinity, Carbonate	mg/L	8	<2.0	<2.0	0.58	1.3
Chloride	mg/L	192	<10.0	<10.0	<10.0	<10.0
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0
Nitrogen, Ammonia	mg/L	0.06	<0.03	0.03	0.03	0.03
Nitrogen, Nitrate	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	139	56	63	66	62
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20
Major Cations	····8/ -	0.00	-0.20	30.20	-0.20	10.20
Calcium	mg/L	166	94	108	107	105
Magnesium	mg/L	65	35	40	39	39
Potassium	mg/L	8.3	6.3	6.8	6.5	6.7
Sodium	mg/L	7.7	9.0	11	11	10
General	iiig/L	1.1	5.0			10
Hardness	mg/L	757	379	433	427	423
nuruness	1118/ L	151	373	-33	727	723

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-701 QAL (Monitoring)

MW-701 QAL (Monitoring)								
		Recommended						
Parameter	Unit	Benchmark 2018	Q1 2022 ^T	Q2 2022 ^T	Q3 2022 ^T	Q4 2022 ^T		
Field								
D.O.	ppm	-	0.30	6.6	0.65	0.26		
ORP	mV	_	244	132	64	138		
рН	SU	5.46-6.46	5.7	5.4	5.7	6.0		
Specific Conductance	uS/cm	-	940	1358	934	776		
Temperature	C	-	6.2	8.4	11	9.0		
Turbidity	NTU	-	2.2	1.7	2.9	2.7		
Water Elevation	ft MSL		1531.05	1533.51	1533.17	1533.18		
Metals	IT IVIJE	-	1551.05	1555.51	1555.17	1555.18		
Aluminum	ug/L	200	-	-	54	-		
		4	-	-	<2.0	-		
Antimony	ug/L	7.5				-		
Arsenic	ug/L		<5.0	<5.0	<5.0	<5.0		
Barium	ug/L	400	-	-	<100	-		
Beryllium	ug/L	2.5	-	-	<1.0	-		
Boron	ug/L	1200	-	-	<300	-		
Cadmium	ug/L	3	-	-	<1.0	-		
Chromium	ug/L	40	-	-	<10.0	-		
Cobalt	ug/L	80	-	-	<20.0	-		
Copper	ug/L	16	7.0	4.6	7.2	6.4		
Iron	ug/L	498	<200	<200	<200	<200		
Lead	ug/L	9	<3.0	<3.0	<3.0	<3.0		
Lithium	ug/L	40	-	-	<10.0	-		
Manganese	ug/L	5263	2760	2660	1680	1120		
Mercury	ng/L	8.4	<6.7	6.0	10	7.7		
Molybdenum	ug/L	200	-	-	<50.0	-		
Nickel	ug/L	80	31	<20.0	<20.0	<20.0		
Selenium	ug/L	20	-	-	<5.0	-		
Silver	ug/L	0.80	-	-	<0.20	-		
Thallium	ug/L	2	-	-	<2.0	-		
Vanadium	ug/L	-	-	-	-	-		
Zinc	ug/L	40	<10.0	26	<10.0	<10.0		
Major Anions								
Alkalinity, Bicarbonate	mg/L	118	73	100	190	131		
Alkalinity, Carbonate	mg/L	8	<2.0	<2.0	0.62	<2.0		
Chloride	mg/L	23	126	298	175	152		
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0		
Nitrogen, Ammonia	mg/L	0.40	<0.03	<0.03	<0.03	<0.03		
Nitrogen, Nitrate	mg/L	1.9	2.0	4.8	4.5	4.0		
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10		
Sulfate	mg/L	86	226	105	122	95		
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20		
Major Cations								
Calcium	mg/L	43	38	28	23	15		
Magnesium	mg/L	19	12	7.1	5.9	4.1		
Potassium	mg/L	9.0	5.7	5.7	4.7	4.7		
Sodium	mg/L	12	139	255	190	165		
General	- 10' -	_						
Hardness	mg/L	199	146	98	81	55		
Silica	mg/L	-	-	-	-			

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-701 UFB (Monitoring)

		10100-2	01 UFB (Monitorin	5/		
		Recommended	O 4 2 2 2 2 P	on nonn ^D		o 4 acaa D
Parameter	Unit	Benchmark 2018	Q1 2022 ^D	Q2 2022 ^D	Q3 2022 ^D	Q4 2022 ^D
Field			0.40		0.64	0.01
D.O.	ppm	-	0.19	0.44	0.61	0.21
ORP	mV	-	-182	-224	-199	-216
pH	SU	6.71-7.71	7.3	7.0	7.2	7.4
Specific Conductance	uS/cm	-	711	621	483	471
Temperature	С	-	7.5	7.8	8.4	8.1
Turbidity	NTU	-	46	30	23	58
Water Elevation	ft MSL	-	1531.34	1533.86	1533.45	1533.00
Metals						
Aluminum	ug/L	200	-	-	<50.0	-
Antimony	ug/L	4.0	-	-	<2.0	-
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0
Barium	ug/L	157	-	-	<100	-
Beryllium	ug/L	2.5	-	-	<1.0	-
Boron	ug/L	1200	-	-	<300	-
Cadmium	ug/L	3.0	-	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	80	-	-	<20.0	-
Copper	ug/L	45.4	<4.0	<4.0	<4.0	<4.0
Iron	ug/L	24958	32000	30800	25200	24200
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	12.9	-	-	<10.0	-
Manganese	ug/L	4677	3600	3220	2900	2730
Mercury	ng/L	4.0	<1.0	<1.0	<1.0	<1.0
Molybdenum	ug/L	200	-	-	<50.0	-
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0
Selenium	ug/L	20	-	-	<5.0	-
Silver	ug/L	0.80	-	-	<0.20	-
Thallium	ug/L	2.0	-	-	<2.0	-
Vanadium	ug/L	-	-	-	-	-
Zinc	ug/L	13.8	<10.0	<10.0	<10.0	<10.0
Major Anions						
Alkalinity, Bicarbonate	mg/L	162	130	184	140	125
Alkalinity, Carbonate	mg/L	8.0	<2.0	<2.0	1.7	<2.0
Chloride	mg/L	49	58	55	51	48
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0
Nitrogen, Ammonia	mg/L	1.75	< 0.03	< 0.03	< 0.03	<0.03
Nitrogen, Nitrate	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	52	128	92	75	67
Sulfide	mg/L	1.86	<0.20	<0.20	<0.20	<0.20
Major Cations	····∂/ -	1.00		-0.20	.0.20	-0120
Calcium	mg/L	39	57	51	50	45
Magnesium	mg/L	16	20	19	18	17
Potassium	mg/L	8.5	5.0	4.5	4.3	4.3
Sodium	mg/L	33	40	34	29	27
General	····6/ ⊑			34		<u>_</u> /
Hardness	mg/L	163	223	206	198	180
	····6/ L	105	225	200	190	100
Silica	mg/L	-	-	-	_	-
		1		1		

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-702 QAL (Monitoring)

MW-702 QAL (Monitoring)							
		Recommended					
Parameter	Unit	Benchmark 2018	Q1 2022 ^T	Q2 2022 ^T	Q3 2022 ^D	Q4 2022 ^D	
Field	Unit	Deficilitate 2010	Q1 2022	QZ 2022	Q3 2022	Q4 2022	
D.O.	nnm	-	1.6	0.61	0.74	0.1	
ORP	ppm mV	-	1.0	26	137	120	
рН	SU	8.81-9.91	9.0	7.7	8.2	7.9	
Specific Conductance	uS/cm	-	395	376	302	357	
· ·	C	-	6.7	7.0	7.5	7.01	
Temperature	NTU		15.0	2.6	2.7		
Turbidity Water Elevation	ft MSL	-	1529.97	1531.50	1531.93	2.5	
Metals	IT IVISE	-	1529.97	1531.50	1551.95	-	
		122			<50.0		
Aluminum	ug/L	123	-	-	<50.0	-	
Antimony	ug/L	4.0	-	-	<2.0	-	
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0	
Barium	ug/L	196	-	-	<100	-	
Beryllium	ug/L	2.5	-	-	<1.0	-	
Boron	ug/L	1200	-	-	<300	-	
Cadmium	ug/L	3.0	-	-	<1.0	-	
Chromium	ug/L	40	-	-	<10.0	-	
Cobalt	ug/L	80	-	-	<20.0	-	
Copper	ug/L	16	<4.0	4.5	<4.0	4.3	
Iron	ug/L	800	<200	<200	<200	<200	
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0	
Lithium	ug/L	40	-	-	<10.0	-	
Manganese	ug/L	546	<50.0	<50.0	<50.0	<50.0	
Mercury	ng/L	3.6	4.4	6.3	7.7	9.9	
Molybdenum	ug/L	200	-	-	<50.0	-	
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0	
Selenium	ug/L	20	-	-	<5.0	-	
Silver	ug/L	0.80	-	-	<0.20	-	
Thallium	ug/L	2.0	-	-	<2.0	-	
Vanadium	ug/L	-	-	-	-	-	
Zinc	ug/L	40	<10.0	<10.0	<10.0	<10.0	
Major Anions							
Alkalinity, Bicarbonate	mg/L	160	132	135	130	131	
Alkalinity, Carbonate	mg/L	41	<2.0	<2.0	2.4	<2.0	
Chloride	mg/L	17.6	<10.0	<10.0	<10.0	<10.0	
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0	
Nitrogen, Ammonia	mg/L	0.04	< 0.03	<0.03	< 0.03	0.04	
Nitrogen, Nitrate	mg/L	1.2	0.42	<0.10	0.23	0.14	
Nitrogen, Nitrite	mg/L	0.18	<0.10	<0.10	<0.10	<0.10	
Sulfate	mg/L	133	51	49	55	52	
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20	
Major Cations						-	
Calcium	mg/L	79	31	22	24	21	
Magnesium	mg/L	14.1	6.3	4.6	5.9	5.6	
Potassium	mg/L	22	8.0	7.3	6.2	5.3	
Sodium	mg/L	60	44	52	42	40	
General							
Hardness	mg/L	251	103	75	85	75	
naraness	۳.6/ L	231	105	,,,		,,,	

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-702 UFB (Monitoring)

MW-702 UFB (Monitoring)								
		Recommended						
Parameter	Unit	Benchmark 2018	Q1 2022 ^D	Q2 2022 ^T	Q3 2022 ^D	Q4 2022 [™]		
Field	Unit	Deficilitate 2018	Q1 2022	QZ 2022	Q3 2022	Q4 2022		
D.O.	nnm	-	0.98	0.47	3.4	1.0		
ORP	ppm mV	-	-231	-258	-182	-227		
рН	SU	7.11-8.11	-231 8.1	7.9	8.1	8.1		
Specific Conductance	uS/cm	-	267	244	232	207		
	C	-	6.8	7.7	7.9	7.5		
Temperature	NTU	4		4.0	2.9	9.5		
Turbidity Water Elevation		-	1.9	-				
	ft MSL	-	1537.62	1536.54	1535.45	1538		
Metals		200			.50.0			
Aluminum	ug/L	200	-	-	<50.0	-		
Antimony	ug/L	4.0	-	-	<2.0	-		
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0		
Barium	ug/L	400	-	-	<100	-		
Beryllium	ug/L	2.5	-	-	<1.0	-		
Boron	ug/L	1200	-	-	<300	-		
Cadmium	ug/L	3.0	-	-	<1.0	-		
Chromium	ug/L	40	-	-	<10.0	-		
Cobalt	ug/L	80	-	-	<20.0	-		
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0		
Iron	ug/L	1328	732	1100	747	685		
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0		
Lithium	ug/L	12.91	-	-	<10.0	-		
Manganese	ug/L	118	86	89	82	86		
Mercury	ng/L	4.0	<1.0	<1.0	<1.0	<1.0		
Molybdenum	ug/L	200	-	-	<50.0	-		
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0		
Selenium	ug/L	20	-	-	<5.0	-		
Silver	ug/L	0.80	-	-	<0.20	-		
Thallium	ug/L	2.0	-	-	<2.0	-		
Vanadium	ug/L	-	-	-	-	-		
Zinc	ug/L	76	<10.0	<10.0	<10.0	<10.0		
Major Anions								
Alkalinity, Bicarbonate	mg/L	112	93	96	100	100		
Alkalinity, Carbonate	mg/L	8.0	<2.0	<2.0	1.8	<2.0		
Chloride	mg/L	40	<10.0	<10.0	<10.0	<10.0		
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0		
Nitrogen, Ammonia	mg/L	0.09	< 0.03	< 0.03	<0.03	<0.03		
Nitrogen, Nitrate	mg/L	0.4	<0.10	0.28	<0.10	<0.10		
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10		
Sulfate	mg/L	36	34	33	34	31		
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20		
Major Cations		0.00	-0.20	-0.20	-0.20	-0.20		
Calcium	mg/L	39	31	31	32	31		
Magnesium	mg/L	11.7	9.8	9.6	9.6	9.1		
Potassium	mg/L	11.7	<3.0	3.0	3.0	2.9		
Sodium		5.2	<3.0 3.2	3.0	3.0	3.2		
General	mg/L	5.2	5.2	5.1	3.1	5.2		
Hardness	mall	140	118	117	118	116		
rial ulless	mg/L	140	110	11/	110	110		

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-703 QAL (Monitoring)

	_	NIW-703	B QAL (Monitoring)			
		Recommended				
Parameter	Unit	Benchmark 2018	Q1 2022 ^T	Q2 2022 ^T	Q3 2022 ^T	Q4 2022 ^T
Field						
D.O.	ppm	-	4.8	5.6	5.8	5.9
ORP	mV	-	201	274	294	202
pН	SU	6.3-7.3	5.6	5.5	5.7	5.7
Specific Conductance	uS/cm	-	181	159	141	134
Temperature	С	-	6.0	6.2	7.2	6.8
Turbidity	NTU	-	0.98	2.7	2.5	2.8
Water Elevation	ft MSL	-	1531.36	1533.74	1534.47	1535.18
Metals						
Aluminum	ug/L	200	-	-	<50.0	-
Antimony	ug/L	4.0	-	-	<2.0	-
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0
Barium	ug/L	400	-	-	<100	-
Beryllium	ug/L	2.5	-	-	<1.0	-
Boron	ug/L	1200	-	-	<300	-
Cadmium	ug/L	3.0	_	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	80	-	-	<20.0	-
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0
Iron	ug/L	287	<200	<200	<200	<200
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	40	-	-	<10.0	-
Manganese	ug/L	107	<50.0	<50.0	<50.0	<50.0
Manganese	ng/L	4.0	<1.0	<1.0	<1.0	<1.0
Molybdenum	ug/L	200	-	-	<50.0	-
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0
Selenium	ug/L	20	-	-	<5.0	-
Silver	ug/L	0.80	-	-	<0.20	-
Thallium	ug/L	2.0	-		<2.0	
Vanadium	ug/L	-	-	-	-	
Zinc	ug/L	40	<10.0	<10.0	<10.0	<10.0
Major Anions	ug/L	40	<10.0	<10.0	<10.0	<10.0
Alkalinity, Bicarbonate	mg/L	92	59	57	59	52
Alkalinity, Carbonate	mg/L	8.0	<2.0	<2.0	<2.0	<2.0
Chloride		40	<10.0	<10.0	<10.0	<10.0
Fluoride	mg/L mg/L	2.5	<10.0	<10.0	<10.0	<10.0
Nitrogen, Ammonia	mg/L	0.08	< 0.03	<0.03	< 0.03	< 0.03
Nitrogen, Nitrate	mg/L	1.8	2.3	2.4	2.5	< 0.03 2.9
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<100
Sulfate	mg/L mg/L	41	178	<0.10 21	<0.10 26	<100 21
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20
Major Cations	iiig/L	0.80	<u>\0.20</u>	NU.20	<u>\0.20</u>	<u>\0.20</u>
Calcium	mg/L	31	20	17	18	15
		9.8	8.3	7.5	7.8	6.5
Magnesium Potassium	mg/L	9.8 2.6	8.3 <1.6			
Potassium	mg/L	7.7	<1.6 1.9	1.5 1.8	1.5	1.4
Sodium General	mg/L	1.1	1.9	1.8	1.9	1.9
Hardness	mall	116	83	73	76	65
natutiess	mg/L	116	ō3	/3	/0	CO

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-703 UFB (Monitoring)

MW-703 UFB (Monitoring)								
		Recommended						
Parameter	Unit	Benchmark 2018	Q1 2022 ^T	Q2 2022 ^T	Q3 2022 ^T	Q4 2022 ^T		
Field								
D.O.	ppm	-	1.1	1.4	0.75	0.03		
ORP	mV	-	-239	-254	-270	-301		
рН	SU	7.44-8.44	7.8	7.8	8.0	8.3		
Specific Conductance	uS/cm	-	280	258	223	220		
Temperature	C	-	6.4	7.1	8.3	7.1		
Turbidity	NTU	-	1.3	2.2	4.4	3.0		
Water Elevation	ft MSL	-	1530.49	1531.83	1532.71	1531.15		
Metals	IT IVIJE	-	1550.49	1551.85	1552.71	1551.15		
Aluminum	ug/L	200	-	-	<50.0	-		
	ug/L ug/L	4.0		-	<2.0	_		
Antimony Arsenic		7.5	<5.0	<5.0	<5.0	-		
	ug/L					<5.0		
Barium	ug/L	400	-	-	<100	-		
Beryllium	ug/L	2.5	-	-	<1.0	-		
Boron	ug/L	1200	-	-	<300	-		
Cadmium	ug/L	3.0	-	-	<1.0	-		
Chromium	ug/L	40	-	-	<10.0	-		
Cobalt	ug/L	80	-	-	<20.0	-		
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0		
Iron	ug/L	1903	1500	1750	1540	1630		
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0		
Lithium	ug/L	40	-	-	<10.0	-		
Manganese	ug/L	200	191	196	182	179		
Mercury	ng/L	4.0	<1.0	<1.0	<1.0	<1.0		
Molybdenum	ug/L	200	-	-	<50.0	-		
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0		
Selenium	ug/L	20	-	-	<5.0	-		
Silver	ug/L	0.80	-	-	<0.20	-		
Thallium	ug/L	2.0	-	-	<2.0	-		
Vanadium	ug/L	-	-	-	-	-		
Zinc	ug/L	40	<10.0	<10.0	<10.0	<10.0		
Major Anions								
Alkalinity, Bicarbonate	mg/L	111	82	83	94	88		
Alkalinity, Carbonate	mg/L	8.0	<2.0	<2.0	1.9	<2.0		
Chloride	mg/L	40	<10.0	<10.0	<10.0	<10.0		
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0		
Nitrogen, Ammonia	mg/L	0.75	<0.03	<0.03	< 0.03	<0.03		
Nitrogen, Nitrate	mg/L	0.4	<0.10	<0.10	<0.10	<0.10		
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10		
Sulfate	mg/L	49	532	46	50	44		
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20		
Major Cations								
Calcium	mg/L	43	32	32	32	31		
Magnesium	mg/L	14	10	11	11	9.8		
Potassium	mg/L	4.2	<2.2	2.2	2.2	2.1		
Sodium	mg/L	17.3	2.8	2.9	3.0	3		
General	1116/ L	17.5	2.0	2.5	3.0	5		
Hardness	mg/L	173	121	125	125	118		
naraness	iiig/ L	1/5	141	125	ز کت	110		

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-703 LLA (Monitoring)

		MW-70	3 LLA (Monitoring)			
		Recommended				
Parameter	Unit	Benchmark 2018	Q1 2022 ^D	Q2 2022 ^T	Q3 2022 ^T	Q4 2022 ^D
Field						
D.O.	ppm	-	0.95	0.43	0.76	0.17
ORP	mV	-	-245	-288	-243	-357
рН	SU	8.08-9.08	8.1	8.2	8.1	9.0
Specific Conductance	uS/cm	-	261	238	211	198
Temperature	С	-	6.6	7.1	7.7	6.9
Turbidity	NTU	-	1.5	3.6	5.0	0.93
Water Elevation	ft MSL	-	1532.56	1534.29	1534.79	1534.30
Metals						
Aluminum	ug/L	200	-	-	<50.0	-
Antimony	ug/L	4	-	-	<2.0	-
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0
Barium	ug/L	400	-	-	<100	-
Beryllium	ug/L	2.5	-	-	<1.0	-
Boron	ug/L	1200	-	-	<300	-
Cadmium	ug/L	3	-	-	<1.0	_
Chromium	ug/L	40	-	-	<10.0	_
Cobalt	ug/L	80	-	-	<20.0	-
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0
Iron	ug/L	2082	583	415	448	457
Lead	ug/L	9	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	28	-		13	< <u>5.0</u>
Manganese	ug/L	95	71	60	73	51
Mercury	ng/L	4	<1.0	<1.0	<1.0	<1.0
Molybdenum	ug/L	200	<1.0	-	<50.0	<1.0
Nickel	ug/L ug/L	80	<20.0	<20.0	<20.0	<20.0
Selenium	ug/L	20	-	-	<5.0	-
Silver		0.8	-	-	<0.20	-
Thallium	ug/L	2			<2.0	
Vanadium	ug/L	-	-	-		-
Zinc	ug/L			-	-	
	ug/L	40	<10.0	<10.0	<10.0	<10.0
Major Anions		02	70	70	05	77
Alkalinity, Bicarbonate	mg/L	92	76	76	85	77
Alkalinity, Carbonate	mg/L	10.4	<2.0	<2.0	1.3	2.3
Chloride	mg/L	97	11	11	<10.0	11
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0
Nitrogen, Ammonia	mg/L	0.08	<0.03	< 0.03	< 0.03	<0.03
Nitrogen, Nitrate	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	43	134	33	39	31
Sulfide	mg/L	0.8	<0.20	<0.20	<0.20	<0.20
Major Cations	1.					
Calcium	mg/L	34	25	24	27	22
Magnesium	mg/L	12.3	9.6	9.6	10	8.6
Potassium	mg/L	7.7	3.4	3.9	3.3	5.6
Sodium	mg/L	51.1	7.2	8.5	6.9	9.1
General	1.					
Hardness	mg/L	135	102	98	108	90

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-703 DBA (Monitoring)

MW-703 DBA (Monitoring)								
		Recommended						
Parameter	Unit	Benchmark 2018	Q1 2022 ^T	Q2 2022 ^T	Q3 2022 ^T	Q4 2022 [™]		
Field	Offic	Deficilitatik 2018	Q1 2022	QZ 2022	Q3 2022	Q4 2022		
D.O.	ppm	-	0.94	0.42	0.62	0.18		
ORP	mV		-286	-309	-261	-380		
рН	SU	8.89-9.89	9.2	8.6	9.1	-380 9.5		
Specific Conductance	uS/cm	-	292	279	243	231		
· · ·	C	-	6.2	6.7	8.0	6.8		
Temperature	NTU	1		2.0	3.0	0.8		
Turbidity Water Elevation		-	1.0					
Metals	ft MSL	-	1529.71	1531.22	1531.69	1531.29		
		200						
Aluminum	ug/L	200	-	-	<50.0	-		
Antimony	ug/L	4.0	-	-	<2.0	-		
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0		
Barium	ug/L	400	-	-	<100	-		
Beryllium	ug/L	2.5	-	-	<1.0	-		
Boron	ug/L	1200	-	-	<300	-		
Cadmium	ug/L	3.0	-	-	<1.0	-		
Chromium	ug/L	40	-	-	<10.0	-		
Cobalt	ug/L	80	-	-	<20.0	-		
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0		
Iron	ug/L	861	<200	<200	<200	<200		
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0		
Lithium	ug/L	20	-	-	14	-		
Manganese	ug/L	200	<50.0	<50.0	<50.0	<50.0		
Mercury	ng/L	4.0	<1.0	<1.0	<1.0	<1.0		
Molybdenum	ug/L	200	-	-	<50.0	-		
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0		
Selenium	ug/L	20	-	-	<5.0	-		
Silver	ug/L	0.80	-	-	<0.20	-		
Thallium	ug/L	2.0	-	-	<2.0	-		
Vanadium	ug/L	-	-	-	-	-		
Zinc	ug/L	26.2	<10.0	<10.0	<10.0	<10.0		
Major Anions								
Alkalinity, Bicarbonate	mg/L	88	78	83	92	80		
Alkalinity, Carbonate	mg/L	39	4.0	<2.0	1.6	5.4		
Chloride	mg/L	20	16	15	15	15		
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0		
Nitrogen, Ammonia	mg/L	0.12	<0.03	< 0.03	<0.03	< 0.03		
Nitrogen, Nitrate	mg/L	0.86	<0.10	<0.10	<0.10	<0.10		
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10		
Sulfate	mg/L	73	236	38	39	35		
Sulfide	mg/L	1.27	<0.20	<0.20	<0.20	<0.20		
Major Cations								
Calcium	mg/L	27	27	27	27	24		
Magnesium	mg/L	17.3	10	11	10	8.9		
Potassium	mg/L	30	10	6.7	10	13		
Sodium	mg/L	16	9.3	7.6	8.6	9.1		
General	iiig/ L	10	J.J	7.0	0.0	5.1		
Hardness	mg/L	140	108	111	110	98		
1101 011055	IIIg/ L	140	100	111	110	90		

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-704 QAL (Monitoring)

MW-704 QAL (Monitoring)								
		Recommended						
Parameter	Unit	Benchmark 2018	Q1 2022 ^T	Q2 2022 ^D	Q3 2022 ^T	Q4 2022 ^D		
Field		Denominari 2010	41 2022	42 2022	40 2022	Q.1 2022		
D.O.	ppm		0.55	0.50	0.56	0.08		
ORP	mV		165	80	108	123		
рН	SU	5.43-6.43	5.9	5.7	5.7	5.8		
Specific Conductance	uS/cm	5.45 0.45	190	311	276	228		
Temperature	C		5.7	6.7	11	9.8		
Turbidity	NTU		3.1	5.9	2.7	2.7		
Water Elevation	ft MSL		1533.38	1535.91	1534.67	1534.36		
Metals	IT IVISE		1333.38	1555.51	1554.07	1554.50		
Aluminum	ug/L	200	-	<u>-</u>	<50.0	-		
Antimony	ug/L	4.0	-	-	<2.0	-		
Arsenic		7.5	<5.0	<5.0	<5.0	<5.0		
	ug/L							
Barium	ug/L	400	-	-	<100	-		
Beryllium	ug/L	2.5	-	-	<1.0	-		
Boron	ug/L	1200	-	-	<300	-		
Cadmium	ug/L	3.0	-	-	<1.0	-		
Chromium	ug/L	40	-	-	<10.0	-		
Cobalt	ug/L	80	-	-	<20.0	-		
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0		
Iron	ug/L	84519	<200	1590	230	<200		
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0		
Lithium	ug/L	40	-	-	<10.0	-		
Manganese	ug/L	8783	454	2610	1190	887		
Mercury	ng/L	34.7	1.5	3.6	2.0	1.6		
Molybdenum	ug/L	200	-	-	<50.0	-		
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0		
Selenium	ug/L	20	-	-	<5.0	-		
Silver	ug/L	0.80	-	-	<0.20	-		
Thallium	ug/L	2.0	-	-	<2.0	-		
Vanadium	ug/L	16	-	-	<4.0	-		
Zinc	ug/L	37.8	<10.0	<10.0	<10.0	<10.0		
Major Anions								
Alkalinity, Bicarbonate	mg/L	264	49	110	220	98		
Alkalinity, Carbonate	mg/L	8.0	<2.0	<2.0	5.6	<2.0		
Chloride	mg/L	24	20	27	46	21		
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0		
Nitrogen, Ammonia	mg/L	0.19	<0.03	0.36	<0.03	<0.03		
Nitrogen, Nitrate	mg/L	1.47	0.10	<0.10	0.26	0.71		
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10		
Sulfate	mg/L	45	14	21	22	15		
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20		
Calcium	mg/L	47	16	32	29	25		
Magnesium	mg/L	15	5.5	10	10	8.1		
Potassium	mg/L	6.1	1.8	3.2	2.8	2.6		
Sodium	mg/L	32	1.0	14	19	16		
General	1116/ L	52	10	17	15	10		
Hardness	mg/L	191	63	123	114	94		
naruness	iiig/L	191	03	123	114	34		

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-704 LLA (Monitoring)

	_	MW-70	04 LLA (Monitoring)			
		Recommended	D	D	D	D
Parameter	Unit	Benchmark 2018	Q1 2022 ^D	Q2 2022 ^D	Q3 2022 ^D	Q4 2022 ^D
Field						
D.O.	ppm	-	0.91	0.40	0.54	0.11
ORP	mV	-	285	-260	-271	-273
рН	SU	8.2-9.2	7.7	7.7	7.9	7.9
Specific Conductance	uS/cm	-	670	589	514	521
Temperature	С	-	7.8	9.0	11	8.9
Turbidity	NTU	-	8.0	15	6.0	21
Water Elevation	ft MSL	-	1530.38	1533.63	1532.06	1531.94
Metals						
Aluminum	ug/L	200	-	-	<50.0	-
Antimony	ug/L	4.0	-	-	<2.0	-
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0
Barium	ug/L	400	-	-	<100	-
Beryllium	ug/L	2.5	-	-	<1.0	-
Boron	ug/L	1200	-	-	<300	-
Cadmium	ug/L	3.0	-	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	80	-	-	<20.0	-
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0
Iron	ug/L	3309	2580	4110	4140	3980
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	28	-	-	22	-
Manganese	ug/L	95	212	293	274	280
Mercury	ng/L	4.0	<1.0	<1.0	<1.0	<1.0
Molybdenum	ug/L	200	-	-	<50.0	-
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0
Selenium	ug/L	20	-	-	<5.0	-
Silver	ug/L	0.80	-	-	<0.20	-
Thallium	ug/L	2.0	-	-	<2.0	-
Vanadium	ug/L	16		-	<4.0	_
Zinc	ug/L ug/L	40	<10.0	<10.0	<10.0	<10.0
Major Anions	ug/L	40	<10.0	<10.0	<10.0	<10.0
Alkalinity, Bicarbonate	mg/L	153	203	212	150	224
Alkalinity, Carbonate		133	<2.0	<2.0	4.0	1.5
Chloride	mg/L	40	70	73	4.0	76
Fluoride	mg/L					
	mg/L	2.5	<1.0	<1.0	<1.0	<1.0
Nitrogen, Ammonia	mg/L	0.1	0.03	< 0.03	< 0.03	< 0.03
Nitrogen, Nitrate	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	21	11	10	7.8	7.7
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20
Major Cations	1.					
Calcium	mg/L	33	56	68	68	70
Magnesium	mg/L	16	22	27	27	28
Potassium	mg/L	12	6.0	6.6	6.9	6.9
Sodium	mg/L	15.5	7.5	8.9	8.9	9.3
General						
Hardness	mg/L	157	230	284	283	289

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-704 UFB (Monitoring)

		MW-704	4 UFB (Monitoring)			
		Decomposed				
Daramatar	Linit	Recommended Benchmark 2018	Q1 2022 ^D	Q2 2022 ^T	Q3 2022 ^T	Q4 2022 ^D
Parameter	Unit	Benchmark 2018	Q1 2022	Q2 2022	Q3 2022	Q4 2022
Field			1.2	4.5	0.74	0.20
D.O.	ppm		1.2	1.5	0.74	0.26
ORP	mV	6474	-146	-138	-173	-165
pH	SU	6.4-7.4	7.1	6.8	7.0	6.9
Specific Conductance	uS/cm		387	413	533	404
Temperature	С		7.5	7.5	9.3	8.8
Turbidity	NTU		8.7	11	5.3	6.0
Water Elevation	ft MSL		1533.90	1536.41	1535.03	1534.98
Metals						
Aluminum	ug/L	5824	-	-	<50.0	-
Antimony	ug/L	4.0	-	-	<2.0	-
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0
Barium	ug/L	400	-	-	<100	-
Beryllium	ug/L	2.5	-	-	<1.0	-
Boron	ug/L	1200	-	-	<300	-
Cadmium	ug/L	3.0	-	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	80	-	-	<20.0	-
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0
Iron	ug/L	44052	23700	25000	42500	26000
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	30	-	-	<10.0	-
Manganese	ug/L	1384	559	648	923	595
Mercury	ng/L	1.4	<1.0	<1.0	<1.0	<1.0
Molybdenum	ug/L	200	-	-	<50.0	-
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0
Selenium	ug/L	20	-	-	<5.0	-
Silver	ug/L	0.80	-	-	<0.20	-
Thallium	ug/L	2.0	-	-	<2.0	-
Vanadium	ug/L	16	-	-	<4.0	-
Zinc	ug/L	40	<10.0	<10.0	<10.0	<10.0
Major Anions	- 0,					
Alkalinity, Bicarbonate	mg/L	198	94	114	140	122
Alkalinity, Carbonate	mg/L	8.0	<2.0	<2.0	0.94	<2.0
Chloride	mg/L	24	51	52	96	58
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0
Nitrogen, Ammonia	mg/L	0.78	<0.03	0.03	< 0.03	0.03
Nitrogen, Nitrate	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Nitrogen, Nitrite	mg/L	0.18	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	45	6.3	4.0	4.0	4.7
Sulfide	mg/L	0.49	0.58	<0.20	<0.20	<0.20
Major Cations	····8/ ⊑	0.45	5.50	-0.20	30.20	10.20
Calcium	mg/L	67	28	34	46	36
Magnesium	mg/L	14	<u> </u>	10	14	9
-		5.3	2.0	2.2	2.9	2.5
Potassium	mg/L					
Sodium	mg/L	43	21	21	36	28
General	mall	226	106	126	170	128
Hardness	mg/L	226	100	126	1/0	128

Humbolt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-704 DBA (Monitoring)

	-					
		Recommended				
Parameter	Unit	Benchmark 2018	Q1 2022 ^T	Q2 2022 ^T	Q3 2022 ^D	Q4 2022 ^T
Field						
D.O.	ppm	-	0.88	0.42	0.60	0.08
ORP	mV	-	-330	-290	-284	-297
рН	SU	8.13-9.13	8.3	8.2	8.4	8.4
Specific Conductance	uS/cm	-	251	239	209	205
Temperature	C	-	8.6	9.2	10.0	9.1
Turbidity	NTU	-	2.0	2.8	2.9	3.0
Water Elevation	ft MSL	-	1515.56	1515.34	1515.08	1515.05
Metals	TUIVISE		1515.50	1515.54	1515.00	1515.05
Aluminum	ug/L	200	-	-	<50.0	-
Antimony	ug/L	8.0	-	_	<2.0	_
Arsenic	ug/L	20.0	<5.0	<5.0	<5.0	<5.0
Barium	ug/L	400			<100	
		4.0	-	-	<100	-
Beryllium Boron	ug/L	4.0	-	-	<1.0	-
	ug/L					
Cadmium	ug/L	4.0	-	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	80	-	-	<20.0	-
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0
Iron	ug/L	9645	727	741	812	683
Lead	ug/L	12.0	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	40	-	-	20	-
Manganese	ug/L	58	52	58	60	53
Mercury	ng/L	4.0	<1.0	<1.0	<1.0	<1.0
Molybdenum	ug/L	200	-	-	<50.0	-
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0
Selenium	ug/L	20	-	-	<5.0	-
Silver	ug/L	0.80	-	-	<0.20	-
Thallium	ug/L	8.0	-	-	<2.0	-
Vanadium	ug/L	16	-	-	<4.0	-
Zinc	ug/L	11	<10.0	<10.0	<10.0	<10.0
Major Anions						
Alkalinity, Bicarbonate	mg/L	129	122	134	88	136
Alkalinity, Carbonate	mg/L	32.0	4.2	2.8	<0.50	2.6
Chloride	mg/L	40	<10.0	<10.0	<10.0	<10.0
Fluoride	mg/L	4.0	<1.0	<1.0	<1.0	<1.0
Nitrogen, Ammonia	mg/L	0.04	<0.03	<0.03	<0.03	<0.03
Nitrogen, Nitrate	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	6	<1.0	1.5	1.5	1.4
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20
Major Cations						
Calcium	mg/L	27	23	24	25	23
Magnesium	mg/L	14	11	11	12	11
Potassium	mg/L	4	<2.5	2.9	3.0	2.8
Sodium	mg/L	14	10	11	11	10
General						
Hardness	mg/L	111	103	106	112	100
* - Diver failed 9/6/17, rep			200			

* - Diver failed 9/6/17, replaced 3/15/18

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-705 QAL (Monitoring)

		IVIW-70	5 QAL (Monitoring)			
		Recommended				
Parameter	Unit	Benchmark 2018	Q1 2022 ^T	Q2 2022 ^T	Q3 2022 ^T	Q4 2022 ^T
Field						Q. 2022
D.O.	ppm	-	1.3	0.52	1.4	0.25
ORP	mV	-	-26	-51	-35	-64
pH	SU	5.67-6.67	6.1	6.0	6.0	6.2
Specific Conductance	uS/cm	-	335	347	347	265
Temperature	C	-	4.9	6.2	12	10
Turbidity	NTU	-	1.2	2.6	2.7	0.33
Water Elevation	ft MSL	-	1533.24	1537.57	1535.90	1534.65
Metals	IT IVIJE	-	1555.24	1557.57	1555.90	1554.05
Aluminum	ug/L	200	-	-	<50.0	-
	ug/L	4.0	-	-	<2.0	-
Antimony Arsenic		7.5	<5.0	<5.0	<5.0	-
	ug/L					<5.0
Barium	ug/L	400	-	-	<100	-
Beryllium	ug/L	2.5	-	-	<1.0	-
Boron	ug/L	1200	-	-	<300	-
Cadmium	ug/L	3.0	-	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	80	-	-	<20.0	-
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0
Iron	ug/L	12957	10400	10500	9380	9440
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	40	-	-	<10.0	-
Manganese	ug/L	1535	878	1080	1030	867
Mercury	ng/L	1.8	<1.0	<1.0	1.0	1.1
Molybdenum	ug/L	200	-	-	<50.0	-
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0
Selenium	ug/L	20	-	-	<5.0	-
Silver	ug/L	0.80	-	-	<0.20	-
Thallium	ug/L	2.0	-	-	<2.0	-
Vanadium	ug/L	16	-	-	<4.0	-
Zinc	ug/L	283	<10.0	<10.0	<10.0	<10.0
Major Anions						
Alkalinity, Bicarbonate	mg/L	85	65	42	58	59
Alkalinity, Carbonate	mg/L	8.0	<2.0	<2.0	<2.0	<2.0
Chloride	mg/L	52	49	73	84	59
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0
Nitrogen, Ammonia	mg/L	0.13	0.13	0.17	0.17	0.17
Nitrogen, Nitrate	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	21.2	65	10	4.3	4.3
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20
Major Cations			- *		•	
Calcium	mg/L	24	16	18	19	16
Magnesium	mg/L	10.9	6.8	7.8	8.1	6.6
Potassium	mg/L	3.0	<2.3	2.5	3.0	2.8
Sodium	mg/L	17	26	30	38	30
General	1116/L		20		30	50
Hardness	mg/L	110	69	77	81	66
naraness	ш <u>в</u> / L	110	05	,,	01	00

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-705 UFB (Monitoring)

		IVIW-70	5 UFB (Monitoring)			
		Deserves and ad				
Devenuenter	L Lucit	Recommended	01 2022 ^D	02.2022 ^D		04 2022 ^T
Parameter	Unit	Benchmark 2018	Q1 2022 ^D	Q2 2022 ^D	Q3 2022 ^T	Q4 2022 ^T
Field			4.0	0.42	0.50	0.00
D.O.	ppm	-	1.0	0.43	0.56	0.20
ORP	mV	-	-182	-139	-112	-142
pH	SU	6.59-7.59	7.0	6.7	6.7	7.0
Specific Conductance	uS/cm	-	426	392	353	335
Temperature	С	-	7.4	8.9	10	9.5
Turbidity	NTU	-	6.7	3.9	3.0	0.57
Water Elevation	ft MSL	-	1535.27	1533.21	-	1534.95
Metals						
Aluminum	ug/L	200	-	-	<50.0	-
Antimony	ug/L	4.0	-	-	<2.0	-
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0
Barium	ug/L	400	-	-	<100	-
Beryllium	ug/L	2.5	-	-	<1.0	-
Boron	ug/L	1200	-	-	<300	-
Cadmium	ug/L	3.0	-	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	80	-	-	<20.0	-
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0
Iron	ug/L	13309	15700	12100	12200	12900
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	13.19	-	-	13	-
Manganese	ug/L	973	1320	1250	1290	1210
Mercury	ng/L	4.0	<1.0	<1.0	<1.0	<1.0
Molybdenum	ug/L	200	-	-	<50.0	-
Nickel	ug/L	80	<20.0	<20.0	<20.0	<20.0
Selenium	ug/L	20	-	-	<5.0	-
Silver	ug/L	0.80	-	-	<0.20	-
Thallium	ug/L	2.0	-	-	<2.0	-
Vanadium	ug/L	16	-	-	<4.0	-
Zinc	ug/L	34	<10.0	<10.0	<10.0	<10.0
Major Anions	- 0,					
Alkalinity, Bicarbonate	mg/L	118	74	164	99	84
Alkalinity, Carbonate	mg/L	8.0	<2.0	<2.0	0.52	<2.0
Chloride	mg/L	36	69	69	67	69
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0
Nitrogen, Ammonia	mg/L	0.1	< 0.03	< 0.03	0.04	0.04
Nitrogen, Nitrate	mg/L	0.4	<0.10	<0.10	< 0.10	<0.10
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	14.2	3.6	3.8	4.2	4.2
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20
Major Cations	1116/ L	0.00	-0.20	\$0.20	10.20	\$0.20
Calcium	mg/L	26	35	36	37	35
Magnesium	mg/L	13	17	17	18	17
-		4.0	4.1	3.6	3.7	4.0
Potassium	mg/L		4.1			
Sodium	mg/L	3.4	4.9	4.6	4.8	4.9
General	mall	127	157	161	166	156
Hardness	mg/L	127	121	101	100	120

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-706 QAL (Monitoring)

		IVIW-70	6 QAL (Monitoring)			
		Recommended				
Parameter	Unit	Benchmark 2018	Q1 2022 ^T	Q2 2022 [™]	Q3 2022 ^T	Q4 2022 ^D
Field	Onit	Deficilitate 2018	Q1 2022	QZ 2022	Q3 2022	Q4 2022
D.O.	ppm	-	1.72	0.91	2.1	1.3
ORP	mV	-	76	56	132	60
рН	SU	5.74-6.74	5.9	5.5	5.7	5.9
Specific Conductance	uS/cm	-	801	821	689	641
Temperature	C	-	8.2	9.3	9.7	9.3
· · · · · · · · · · · · · · · · · · ·	NTU	4	4.0	9.5 12	4.4	2.0
Turbidity Water Elevation	ft MSL	-	1556.15	1561.89	4.4	1560.81
Metals	IT IVISE	-	1550.15	1561.89	1501.52	1560.81
		200	-	-	<50.0	-
Aluminum	ug/L		-	-		-
Antimony	ug/L	4.0	-	-	<2.0	-
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0
Barium	ug/L	400	-	-	<100	-
Beryllium	ug/L	2.5	-	-	<1.0	-
Boron	ug/L	1200	-	-	<300	-
Cadmium	ug/L	3.0	-	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	31	-	-	<20.0	-
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0
Iron	ug/L	8029	1760	2650	1820	1740
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	17.2	-	-	<10.0	-
Manganese	ug/L	23484	9940	10400	10100	9440
Mercury	ng/L	4.0	<1.0	<1.0	<1.0	<1.0
Molybdenum	ug/L	200	-	-	<50.0	-
Nickel	ug/L	27.0	<20.0	<20.0	<20.0	<20.0
Selenium	ug/L	20	-	-	<5.0	-
Silver	ug/L	0.80	-	-	<0.20	-
Thallium	ug/L	2.0	-	-	<2.0	-
Vanadium	ug/L	4.8	-	-	<4.0	-
Zinc	ug/L	77.1	<10.0	<10.0	<10.0	<10.0
Major Anions						
Alkalinity, Bicarbonate	mg/L	131.8	87	85	87	86
Alkalinity, Carbonate	mg/L	8.0	<2.0	<2.0	<2.0	<2.0
Chloride	mg/L	165	136	144	144	131
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0
Nitrogen, Ammonia	mg/L	0.88	0.35	0.43	0.37	0.34
Nitrogen, Nitrate	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	434	124	129	159	134
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20
Major Cations						
Calcium	mg/L	133	63	60	60	56
Magnesium	mg/L	44	24	25	24	23
Potassium	mg/L	5.6	4.3	4.3	4.7	4.6
Sodium	mg/L	140	50	51	59	55
General	····8/ ⊑	170	50			
Hardness	mg/L	619	257	255	248	234
	1118/L	015	237	233	270	237

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-707 QAL (Monitoring)

		MW-70	7 QAL (Monitoring)			
		Recommended				
Parameter	Unit	Benchmark 2018	Q1 2022 ^T	Q2 2022 ^T	Q3 2022 ^T	Q4 2022 ^T
Field						
D.O.	ppm	-	0.51	0.45	0.61	0.26
ORP	mV	-	-130	-127	-130	-145
рН	SU	6.43-7.43	7.2	6.8	6.9	7.1
Specific Conductance	uS/cm	-	290	289	252	244
Temperature	C	-	7.1	7.3	9.5	9.2
Turbidity	NTU	-	2.2	2.8	2.8	0.48
Water Elevation	ft MSL	_	1579.98	1583.17	1582.08	1581.82
Metals						
Aluminum	ug/L	200	-	-	<50.0	-
Antimony	ug/L	4.0	-	-	<2.0	-
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0
Barium	ug/L	400	-	-	<100	-
Beryllium	ug/L	2.5	-	-	<1.0	-
Boron	ug/L	1200	-	-	<300	-
Cadmium	ug/L	3.0	-	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	80	_	-	<20.0	-
Copper	ug/L	16	<4.0	<4.0	<4.0	<4.0
Iron	ug/L	7115	4110	4270	3980	4000
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	40	<5.0	<5.0	<10.0	<5.0
Manganese	ug/L	1128	970	956	922	933
Mercury	ng/L	4.0	<1.0	<1.0	<1.0	<1.0
Molybdenum	ug/L	200	<1.0	-	<50.0	<1.0
Nickel	ug/L ug/L	80	<20.0	<20.0	<20.0	<20.0
Selenium	ug/L ug/L	20	-		<5.0	
Silver	ug/L ug/L	0.80	-	-	<0.20	-
Thallium	ug/L	2.0	-	-	<2.0	-
Vanadium	ug/L ug/L	16	-	-	<4.0	-
Zinc	ug/L	29.3	<10.0	<10.0	<10.0	<10.0
Major Anions	ug/L	29.5	<10.0	<10.0	<10.0	<10.0
Alkalinity, Bicarbonate	mg/L	168.3	158	160	170	166
Alkalinity, Carbonate	mg/L	8.0	<2.0	<2.0	<2.0	<2.0
Chloride	mg/L	40	<10.0	<10.0	<10.0	<10.0
Fluoride	mg/L	2.5	<10.0	<10.0	<1.0	<10.0
Nitrogen, Ammonia	mg/L	0.32	0.27	0.28	0.27	0.33
Nitrogen, Nitrate	mg/L	0.32	<0.10	<0.10	<0.10	<0.10
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	9.4	<0.10	<1.0	<0.10	<0.10
Sulfide		0.80	<0.20	<0.20	<0.20	<0.20
Major Cations	mg/L	0.80	<u>\0.20</u>	<u>\0.20</u>	<u>\0.20</u>	N0.20
Calcium	mg/L	46	42	42	42	42
	_	13	42	42	42	42
Magnesium Potassium	mg/L					
Potassium	mg/L	2.9	<2.2	2.2	2.1	2.3
Sodium General	mg/L	3.6	2.7	2.7	2.6	2.6
Hardness	mg/L	162	149	150	150	150
1101011055	IIIB/L	102	143	130	130	130

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data MW-9R (Monitoring)

			W-9R (Wohltoning)			
		Recommended				
Parameter	Unit	Benchmark 2018	Q1 2022 ^D	Q2 2022 ^D	Q3 2022 ^T	Q4 2022 ^T
Field						
D.O.	ppm	-	4.7	4.7	5.05	5.0
ORP	mV	-	348	69	253	176
рН	SU	5.4-6.4	3.4	6.1	5.6	6.2
Specific Conductance	uS/cm	-	1547	178	214.6	252
Temperature	С	-	7.4	8.4	13	13
Turbidity	NTU	-	9.2	4.9	472	1.4
Water Elevation	ft MSL	-	1592.91	1597.45	1592.00	1595.21
Metals						
Aluminum	ug/L	200	-	-	114	-
Antimony	ug/L	4.0	-	-	<2.0	-
Arsenic	ug/L	7.5	<5.0	<5.0	<5.0	<5.0
Barium	ug/L	400	-	-	<100	-
Beryllium	ug/L	2.5	-	-	<1.0	-
Boron	ug/L	1200	-	-	<300	-
Cadmium	ug/L	3.0	-	-	<1.0	-
Chromium	ug/L	40	-	-	<10.0	-
Cobalt	ug/L	80	-	-	<20.0	-
Copper	ug/L	39	962	<4.0	<4.0	<4.0
Iron	ug/L	4099	29700	280	1550	<200
Lead	ug/L	9.0	<3.0	<3.0	<3.0	<3.0
Lithium	ug/L	40	-	-	<10.0	-
Manganese	ug/L	1376	4300	50	58	<50.0
Mercury	ng/L	10.1	<1.0	<1.0	3.0	<1.0
Molybdenum	ug/L	200	-	-	<50.0	-
Nickel	ug/L	186	5950	84	170	174
Selenium	ug/L	20	-	-	<5.0	-
Silver	ug/L	0.80	-	_	<0.20	-
Thallium	ug/L	2.0	_	_	<2.0	-
Vanadium	ug/L	-	-	-	-	-
Zinc	ug/L	38	2080	24	51	18
Maior Anions	×8/ =					
Alkalinity, Bicarbonate	mg/L	85	<2.0	32	39	58
Alkalinity, Carbonate	mg/L	8.0	<2.0	<2.0	<2.0	<2.0
Chloride	mg/L	185	<10.0	12	<10.0	<10.0
Fluoride	mg/L	2.5	<1.0	<1.0	<1.0	<1.0
Nitrogen, Ammonia	mg/L	0.22	0.07	<0.03	0.08	<0.03
Nitrogen, Nitrate	mg/L	3.8	0.40	0.41	0.15	0.77
Nitrogen, Nitrite	mg/L	0.4	<0.10	<0.10	<0.10	<0.10
Sulfate	mg/L	335	776	36	81	89
Sulfide	mg/L	0.80	<0.20	<0.20	<0.20	<0.20
Major Cations						
Calcium	mg/L	116	166	18	25	38
Magnesium	mg/L	41	47	5.1	8.5	11
Potassium	mg/L	5.2	10	1.8	2.1	2.7
Sodium	mg/L	48	11	5.8	8.6	6.6
General						
	mø/l	479	609	66	98	140
Hardness	mg/L	479	609	66	98	140

*- Inadequate groundwater volume available for monitoring or sampling

Humboldt Mill 2022 Mine Permit Groundwater Quality Monitoring Data Abbreviations and Data Qualifiers

Notes:

Benchmarks are calculated based on guidance from Eagles Mine's Development of Site Specific Benchmarks for Mine Permit Water Quality Monitoring.

Results in **bold** text indicate that the parameter was detected at a level greater than the laboratory reporting limit.

Highlighted Cell = Value is equal to or above site-specific benchmark. An exceedance occurs if there are 2 consecutive sampling events with a value equal to or greater than the benchmark at a compliance monitoring location.

(p) = Due to less than two detections in baseline dataset, benchmark defaulted to four times the reporting limit.

--Denotes no benchmark required or parameter was not required to be collected during the sampling quarter.

e = estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

NM = Not measured.

^T = Samples not filtered and all values are total concentrations.

² = Sample for metal and major cation parameters was filtered and values are dissolved concentrations.

Appendix G

Humboldt Mill

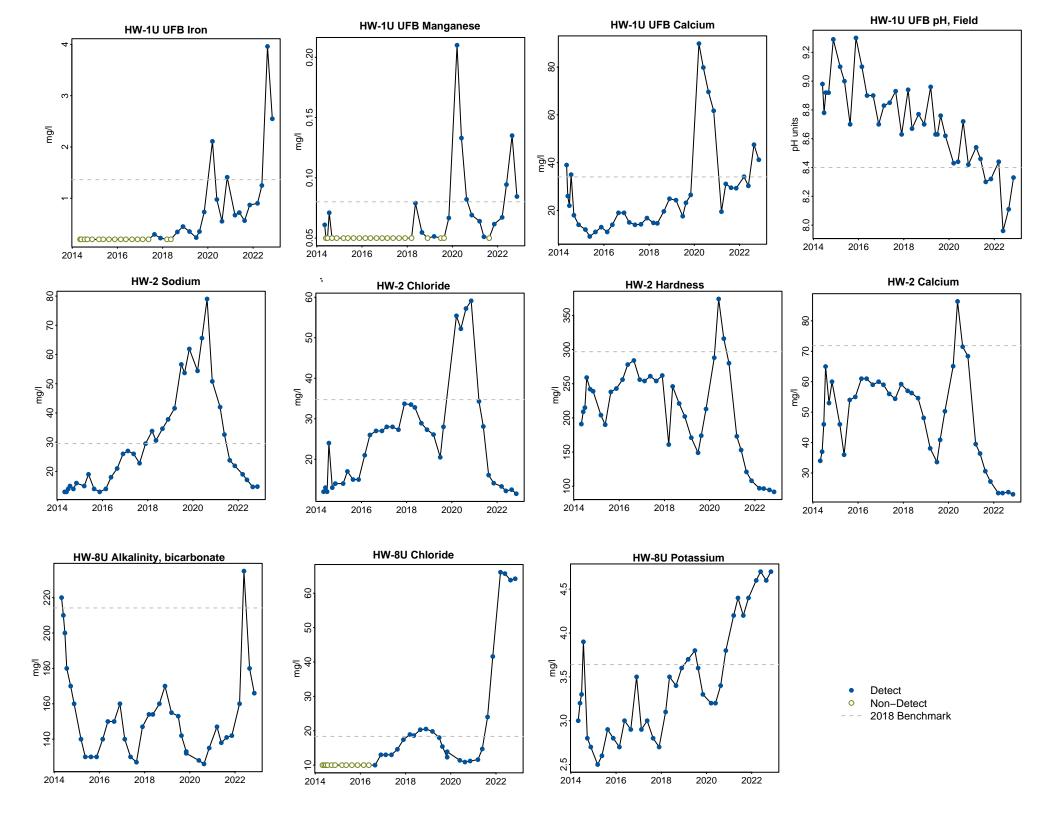
Groundwater Trend Analysis Summary

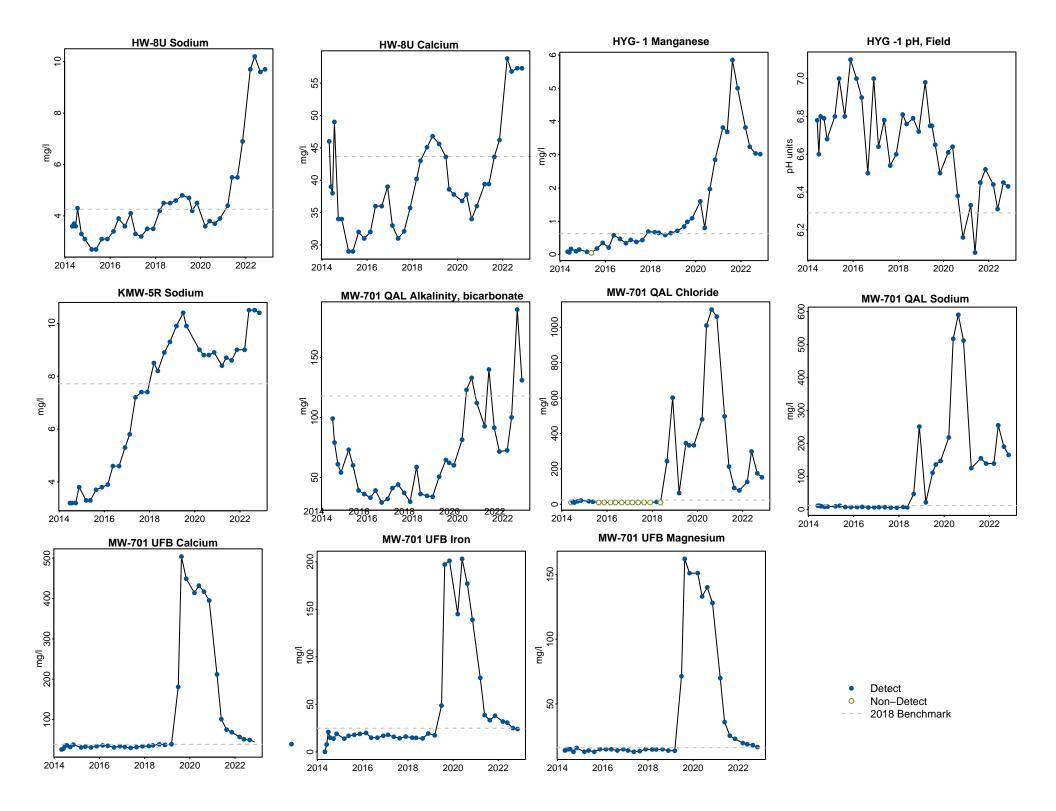
			Non-	Percent					Standard	Coeff. of	M-K Test	Approx.	Trend at	Theil-Sen
Location	Parameter	Samples	Detects	Detected	Min.	Max.	Mean	Median	Deviation	Variation	Value (S)	p-value	95% Conf.	Slope, conc/yr
HW-1L	Bicarbonate alkalinity	. 32	0	100%	74.5	92	81.1	81.0	3.09	0.04	-7	0.9223	no trend	0
HW-1L	Calcium	33	0	100%	20	31.7	26.1	26	2.40	0.09	244	0.0002	POSITIVE	0.664
HW-1L	Chloride	34	0	100%	34	77.4	47.8	45.8	9.1	0.19	-30	0.6667	no trend	-0.109
HW-1L	Hardness	32	0	100%	103	139	114	113	7.72	0.07	132	0.0330	POSITIVE	1.17
HW-1L	Iron	34	1	97%	0.2	1.23	0.75	0.728	0.264	0.35	159	0.0191	POSITIVE	0.049
HW-1L	Magnesium	33	0	100%	9.1	11.8	10.8	11	0.630	0.06	202	0.0016	POSITIVE	0.109
HW-1L	Manganese	33	31	6%	0.0011	0.0599								
HW-1L	Field pH	31	0	100%	8.12	8.97	8.45	8.4	0.219	0.03	-259	0.0000	NEGATIVE	-0.071
HW-1L	Potassium	32	1	97%	1.6	2.3	1.92	1.9	0.182	0.09	104	0.0833	no trend	0.015
HW-1L	Sodium	34	0	100%	20.1	40.5	25.7	24.3	4.36	0.17	-11	0.8818	no trend	0
HW-1L	Sulfate	32	0	100%	16	35.4	25.3	25.3	4.20	0.17	395	0.0000	POSITIVE	1.63
HW-1U LLA	Bicarbonate alkalinity	32	0	100%	48.5	170	101	101	20.2	0.20	-112	0.0704	no trend	-2.27
HW-1U LLA	Calcium	32	0	100%	2.6	64	31.1	26.4	16.4	0.53	172	0.0055	POSITIVE	3.00
HW-1U LLA	Chloride	32	0	100%	17.6	408	84.7	28.5	115	1.35	115	0.0642	no trend	7.04
HW-1U LLA	Hardness	32	0	100%	9.8	197	112	107	47.9	0.43	167	0.0071	POSITIVE	9.54
HW-1U LLA	Iron	32	12	63%	0.013	45.2	4.16	0.515	11.3	2.72	214	0.0004	POSITIVE	0.099
HW-1U LLA	Magnesium	32	1	97%	1	26.4	11.2	9.95	5.95	0.53	121	0.0514	no trend	0.613
HW-1U LLA	Manganese	32	20	38%	0.0011	0.49								
HW-1U LLA	Field pH	34	0	100%	7.8	9.43	8.51	8.44	0.373	0.04	-200	0.0031	NEGATIVE	-0.060
HW-1U LLA	Potassium	31	0	100%	0.57	6.7	3.94	3.6	1.67	0.42	65	0.2761	no trend	0.162
HW-1U LLA	Sodium	32	0	100%	29.3	232	76.6	49.4	52.4	0.69	134	0.0309	POSITIVE	4.31
HW-1U LLA	Sulfate	32	0	100%	38	434	90.9	58.2	95.0	1.04	117	0.0599	no trend	1.60
HW-1U UFB	Bicarbonate alkalinity	37	0	100%	49.4	170	91.1	92.0	25.2	0.28	-18	0.8240	no trend	-0.519
HW-1U UFB	Calcium	38	0	100%	9.1	89.8	27.7	20.8	19.2	0.69	298	0.0002	POSITIVE	2.55
HW-1U UFB	Chloride	38	18	53%	0.72	1320	154	22	372	2.42	-98	0.2003	no trend	0
HW-1U UFB	Hardness	38	0	100%	45	291	104	89	60.2	0.58	206	0.0099	POSITIVE	6.45
HW-1U UFB	Iron	37	17	54%	0.2	3.96	0.62	0.234	0.783	1.26	451	0.0000	POSITIVE	0.090
HW-1U UFB	Magnesium	38	0	100%	3.8	16.7	8.17	6.35	4.08	0.50	20	0.8111	no trend	0.045
HW-1U UFB	Manganese	38	21	45%	0.05	0.21	0.065	0.05	0.032	0.49	265	0.0003	POSITIVE	0.0004
HW-1U UFB	Field pH	38	0	100%	7.96	9.3	8.71	8.71	0.300	0.03	-463	0.0000	NEGATIVE	-0.092
HW-1U UFB	Potassium	38	0	100%	2.3	21	7.15	4.7	5.36	0.75	-188	0.0187	NEGATIVE	-0.640
HW-1U UFB	Sodium	38	0	100%	4.8	717	83.7	22	177	2.11	-187	0.0193	NEGATIVE	-3.50
HW-1U UFB	Sulfate	38	5	87%	0.86	73	16.9	8.7	19.6	1.15	-285	0.0004	NEGATIVE	-3.04
HW-2	Bicarbonate alkalinity	38	0	100%	70.9	130	105	105	17.0	0.16	-247	0.0019	NEGATIVE	-3.33
HW-2	Calcium	38	0	100%	23	86.4	48.8	53.5	15.2	0.31	-166	0.0380	NEGATIVE	-2.39
HW-2	Chloride	37	0	100%	11.5	59.1	25.1	26	13.2	0.52	169	0.0279	POSITIVE	1.59
HW-2	Hardness	38	0	100%	91.8	374	212	218	66.9	0.32	-193	0.0158	NEGATIVE	-13.1
HW-2	Iron	38	3	92%	0.2	6.09	1.51	1.10	1.30	0.86	-13	0.8800	no trend	-0.0030

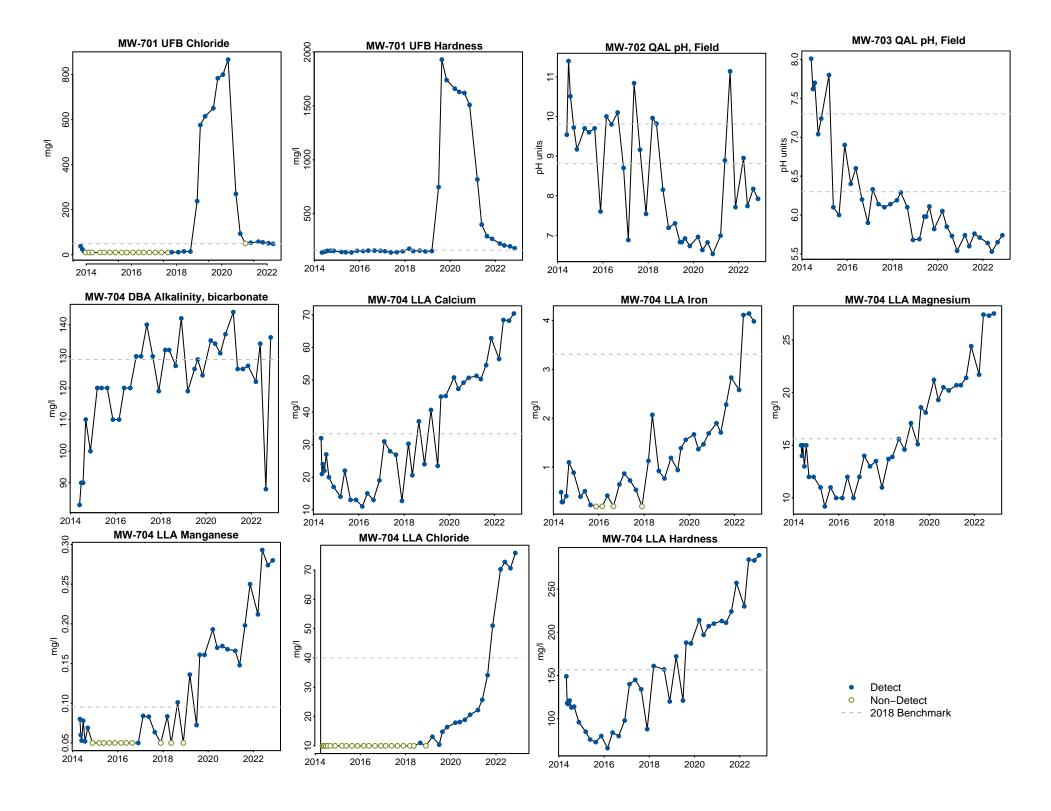
HW-2	Magnesium	38	0	100%	8.3	38.5	21.0	22.9	6.65	0.32	-312	0.0001	NEGATIVE	-1.40
HW-2	Manganese	36	1	97%	0.05	0.713	0.27	0.226	0.177	0.65	224	0.0024	POSITIVE	0.025
HW-2	Field pH	34	0	100%	7.39	8.72	7.91	7.91	0.339	0.04	-97	0.1544	no trend	-0.040
HW-2	Potassium	38	0	100%	2.6	12	4.94	4.65	2.03	0.41	-63	0.4353	no trend	-0.091
HW-2	Sodium	38	0	100%	13	79	29.4	23.3	17.4	0.59	303	0.0001	POSITIVE	4.17
HW-2	Sulfate	38	0	100%	14.7	298	134	133	65.6	0.49	26	0.7528	no trend	0.939
HW-8U	Bicarbonate alkalinity	38	0	100%	126	235	154	149	26.3	0.17	-67	0.4056	no trend	-1.29
HW-8U	Calcium	38	0	100%	29	58.8	40.0	38.3	8.01	0.20	267	0.0008	POSITIVE	1.53
HW-8U	Chloride	38	12	68%	10	66.1	19.6	13	16.8	0.86	407	0.0000	POSITIVE	1.73
HW-8U	Hardness	38	0	100%	127	211	163	160	23.3	0.14	61	0.4503	no trend	1.08
HW-8U	Iron	38	0	100%	7	26.3	13.5	11.3	5.70	0.42	37	0.6507	no trend	0.175
HW-8U	Magnesium	38	0	100%	11	19	13.4	13.0	1.95	0.15	19	0.8204	no trend	0
HW-8U	Manganese	38	0	100%	3	6.77	4.84	4.85	1.04	0.21	117	0.1446	no trend	0.111
HW-8U	Field pH	37	0	100%	6.6	9.96	7.00	6.9	0.528	0.08	134	0.0815	no trend	0.020
HW-8U	Potassium	38	0	100%	2.5	4.7	3.44	3.3	0.652	0.19	417	0.0000	POSITIVE	0.208
HW-8U	Sodium	38	0	100%	2.7	10.2	4.58	3.9	1.99	0.43	407	0.0000	POSITIVE	0.330
HW-8U	Sulfate	38	4	89%	1	15.7	7.44	7.85	4.41	0.59	161	0.0441	POSITIVE	0.708
HYG-1	Bicarbonate alkalinity	38	0	100%	140	370	221	226	56.2	0.25	97	0.2272	no trend	4.66
HYG-1	Calcium	38	0	100%	35	66.4	49.6	48.9	7.55	0.15	104	0.1950	no trend	0.664
HYG-1	Chloride	38	10	74%	10	24	13	12	3.4	0.26	-227	0.0040	NEGATIVE	-0.293
HYG-1	Hardness	38	0	100%	166	310	229	226	36.5	0.16	-57	0.4811	no trend	-1.37
HYG-1	Iron	38	33	13%	0.013	0.353								
HYG-1	Magnesium	38	0	100%	16.1	32.9	24.0	23.4	4.09	0.17	-143	0.0740	no trend	-0.428
HYG-1	Manganese	37	1	97%	0.05	5.85	1.34	0.653	1.55	1.15	543	0.0000	POSITIVE	0.313
HYG-1	Field pH	38	0	100%	6.08	7.1	6.65	6.67	0.236	0.04	-354		NEGATIVE	-0.062
HYG-1	Potassium	38	0	100%	6.6	13	9.46	9.7	1.49	0.16	141	0.0781	no trend	0.187
HYG-1	Sodium	38	0	100%	12	78	34.3	32.1	16.5	0.48	-41	0.6149	no trend	-0.791
HYG-1	Sulfate	38	0	100%	34.5	133	76.2	78.8	28.9	0.38	-217	0.0066	NEGATIVE	-5.49
KMW-5R	Bicarbonate alkalinity	37	0	100%	310	430	371	371	21.5	0.06	200	0.0090	POSITIVE	3.13
KMW-5R	Calcium	36	0	100%	94	160	120	113	18.7	0.16	-443	0.0000	NEGATIVE	-5.40
KMW-5R	Chloride	37	22	41%	0.72	170	44.5	10	53.5	1.20	-336	0.0000	NEGATIVE	-9.07
KMW-5R	Hardness	35	0	100%	379	634	495	480	76.1	0.15	-428	0.0000	NEGATIVE	-24.3
KMW-5R	Iron	37	7	81%	0.2	129	17.7	3.52	34.4	1.94	189	0.0136	POSITIVE	0.531
KMW-5R	Magnesium	37	0	100%	35.2	65	48.2	47	9.12	0.19	-357	0.0000	NEGATIVE	-2.31
KMW-5R	Manganese	35	1	97%	0.718	2.79	1.87	1.91	0.464	0.25	-242	0.0006	NEGATIVE	-0.094
KMW-5R	Field pH	34	0	100%	6.3	7.4	6.92	6.97	0.245	0.04	-203	0.0027	NEGATIVE	-0.043
KMW-5R	Potassium	37	0	100%	6.3	8.3	7.30	7.2	0.535	0.07	-331	0.0000	NEGATIVE	-0.135
KMW-5R	Sodium	35	0	100%	3.2	10.5	7.13	8.4	2.62	0.37	450	0.0000	POSITIVE	0.894
KMW-5R	Sulfate	37	0	100%	54.2	130	80.1	75.2	22.0	0.27	-282	0.0002	NEGATIVE	-4.25
MW-701 QAL	Bicarbonate alkalinity	36	0	100%	29	190	70.1	60.5	38.2	0.55	226	0.0022	POSITIVE	7.61

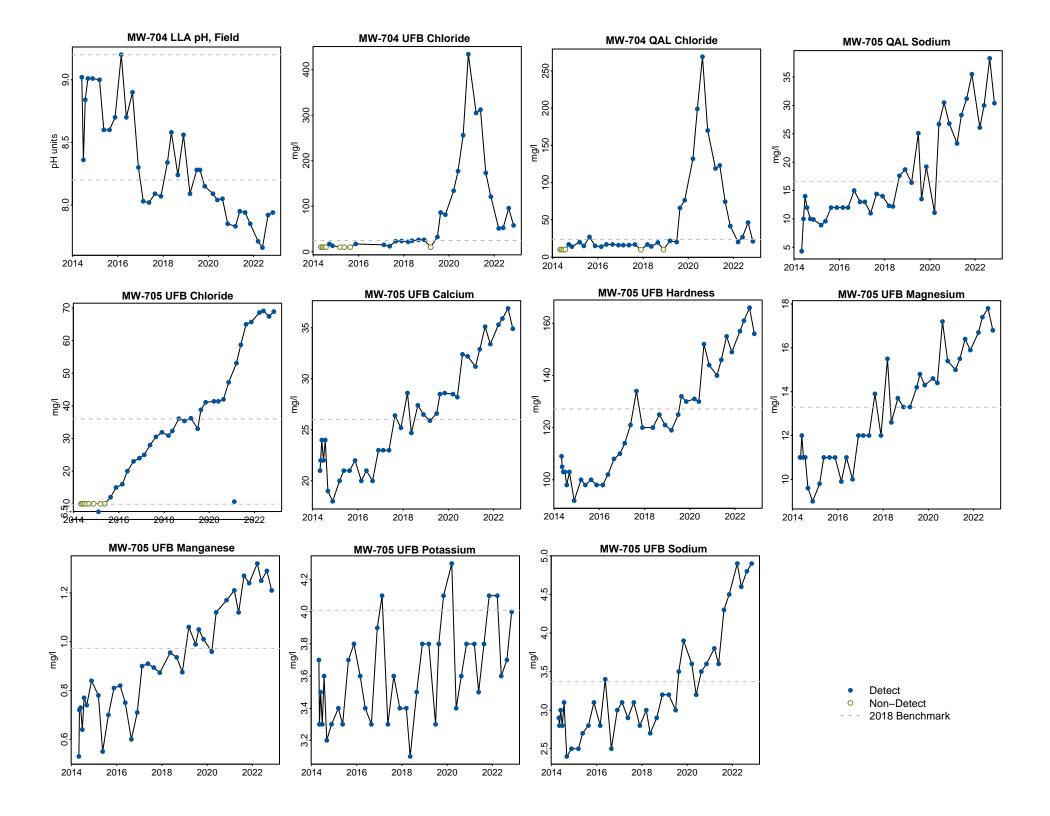
MW-701 QAL Calcium	36	0	100%	8.5	197	50.5	26.4	56.0	1.11	109	0.1410	no trend	2.65
MW-701 QAL Chloride	37	12	68%	10	1100	201	21	304	1.51	271	0.0003	POSITIVE	20.9
MW-701 QAL Hardness	36	0	100%	36	760	197	119	200	1.02	91	0.2201	no trend	7.51
MW-701 QAL Iron	36	33	8%	0.013	56								
MW-701 QAL Magnesium	36	0	100%	3.9	64.9	16.5	10	16.0	0.97	55	0.4618	no trend	0.337
MW-701 QAL Manganese	38	13	66%	0.0011	9.99	1.57	0.344	2.25	1.44	111	0.1595	no trend	0.029
MW-701 QAL Field pH	37	0	100%	5.28	6.64	5.78	5.77	0.321	0.06	-314	0.0000	NEGATIVE	-0.084
MW-701 QAL Potassium	36	0	100%	2.1	17.7	6.72	5.8	4.28	0.64	29	0.7026	no trend	0.123
MW-701 QAL Sodium	36	0	100%	5.1	590	107	11	155	1.44	248	0.0008	POSITIVE	21.9
MW-701 QAL Sulfate	37	0	100%	11	535	109	45	134	1.23	90	0.2443	no trend	6.45
MW-701 UFB Bicarbonate alkalinity	38	0	100%	112	259	151	141	31.1	0.21	5	0.9594	no trend	0
MW-701 UFB Calcium	38	0	100%	26	504	111	36.8	148	1.33	344	0.0000	POSITIVE	3.39
MW-701 UFB Chloride	38	17	55%	10	867	145	14.3	260	1.80	301	0.0001	POSITIVE	5.22
MW-701 UFB Hardness	38	0	100%	141	1930	445	158	564	1.27	293	0.0002	POSITIVE	8.33
MW-701 UFB Iron	38	0	100%	0.21	203	46.6	19	59.6	1.28	287	0.0003	POSITIVE	2.73
MW-701 UFB Magnesium	38	0	100%	13	162	39.3	15	48.0	1.22	229	0.0038	POSITIVE	0.670
MW-701 UFB Manganese	38	1	97%	0.05	19.3	4.95	2.55	5.22	1.05	121	0.1312	no trend	0.171
MW-701 UFB Field pH	38	0	100%	6.5	7.55	7.15	7.22	0.312	0.04	-132	0.0994	no trend	-0.024
MW-701 UFB Potassium	38	0	100%	2.7	20	6.83	4.3	5.55	0.81	124	0.1216	no trend	0.210
MW-701 UFB Sodium	38	0	100%	4.3	530	87.6	10.4	151	1.73	150	0.0608	no trend	1.52
	50	U	100 /0	7.5	550	01.0	10.4			100	0.0000	no trena	1.52
MW-701 UFB Sulfate	38	0	100%	2.9	1950	320	27	563	1.76	143	0.0000	no trend	7.78
MW-701 UFB Sulfate	38	0	100%	2.9	1950	320	27	563	1.76	143	0.0742 0.0001	no trend	7.78
MW-701 UFB Sulfate MW-702 QAL Bicarbonate alkalinity	38 37	0 2	100% 95%	2.9 2	1950 160	320 97.8	27 111	563 38.3	1.76 0.39	143 310	0.0742 0.0001	no trend POSITIVE	7.78 6.54
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalcium	38 37 36 36 36	0 2 0 27 0	100% 95% 100%	2.9 2 20.8	1950 160 93	320 97.8 37.2	27 111	563 38.3 14.4	1.76 0.39 0.39	143 310 -313	0.0742 0.0001 0.0000 	no trend POSITIVE	7.78 6.54
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChloride	38 37 36 36	0 2 0 27	100% 95% 100% 25%	2.9 2 20.8 10	1950 160 93 17	320 97.8 37.2 	27 111 33.5 	563 38.3 14.4 	1.76 0.39 0.39 	143 310 -313 	0.0742 0.0001 0.0000 	no trend POSITIVE NEGATIVE 	7.78 6.54 -3.16
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardness	38 37 36 36 36 37 37	0 2 0 27 0 37 0	100% 95% 100% 25% 100%	2.9 20.8 10 74.7	1950 160 93 17 227	320 97.8 37.2 131	27 111 33.5 	563 38.3 14.4 	1.76 0.39 0.39 0.28	143 310 -313 -357	0.0742 0.0001 0.0000 	no trend POSITIVE NEGATIVE 	7.78 6.54 -3.16
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardnessMW-702 QALIron	38 37 36 36 36 36 37	0 2 0 27 0 37	100% 95% 100% 25% 100% 0%	2.9 20.8 10 74.7 0.013	1950 160 93 17 227 0.2	320 97.8 37.2 131 	27 111 33.5 129 	563 38.3 14.4 37.2 	1.76 0.39 0.39 0.28 	143 310 -313 -357 	0.0742 0.0001 0.0000 0.0000 0.0631	no trend POSITIVE NEGATIVE NEGATIVE 	7.78 6.54 -3.16 -11.0
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardnessMW-702 QALIronMW-702 QALMagnesium	38 37 36 36 36 37 37	0 2 0 27 0 37 0	100% 95% 100% 25% 100% 0% 100%	2.9 20.8 10 74.7 0.013 2.4	1950 160 93 17 227 0.2 14.3	320 97.8 37.2 131 8.96	27 111 33.5 129 8.3	563 38.3 14.4 37.2 3.13	1.76 0.39 0.39 0.28 0.35	143 310 -313 -357 -143	0.0742 0.0001 0.0000 0.0000 0.0631 0.0011	no trend POSITIVE NEGATIVE NEGATIVE NEGATIVE no trend	7.78 6.54 -3.16 -11.0 -0.360
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardnessMW-702 QALIronMW-702 QALMagnesiumMW-702 QALManganese	38 37 36 36 36 37 37 37	0 2 0 27 0 37 0 22	100% 95% 100% 25% 100% 0% 100% 41%	2.9 20.8 10 74.7 0.013 2.4 0.0011	1950 160 93 17 227 0.2 14.3 0.55 11.4 18	320 97.8 37.2 131 8.96 0.10 8.53 7.70	27 111 33.5 129 8.3 0.05	563 38.3 14.4 37.2 3.13 0.114	1.76 0.39 0.39 0.28 0.35 1.15	143 310 -313 -357 -143 -226	0.0742 0.0001 0.0000 0.0000 0.0631 0.0011	no trend POSITIVE NEGATIVE NEGATIVE no trend NEGATIVE	7.78 6.54 -3.16 -11.0 -0.360 -0.0017
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardnessMW-702 QALIronMW-702 QALMagnesiumMW-702 QALManganeseMW-702 QALField pH	38 37 36 36 36 37 37 37 37 38 38 36 37	0 2 0 27 0 37 0 22 0	100% 95% 100% 25% 100% 0% 100% 41% 100%	2.9 20.8 10 74.7 0.013 2.4 0.0011 6.53	1950 160 93 17 227 0.2 14.3 0.55 11.4 18 60	320 97.8 37.2 131 8.96 0.10 8.53	27 111 33.5 129 8.3 0.05 8.44 6.35 38	563 38.3 14.4 37.2 3.13 0.114 1.46	1.76 0.39 0.39 0.28 0.35 1.15 0.17	143 310 -313 -357 -143 -226 -247	0.0742 0.0001 0.0000 0.0631 0.0011 0.0020	no trendPOSITIVENEGATIVENEGATIVEno trendNEGATIVENEGATIVENEGATIVE	7.78 6.54 -3.16 -11.0 -0.360 -0.0017 -0.316
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardnessMW-702 QALIronMW-702 QALMagnesiumMW-702 QALMagneseMW-702 QALField pHMW-702 QALPotassium	38 37 36 36 36 37 37 37 37 37 38 38	0 2 0 27 0 37 0 22 0 22 0	100% 95% 100% 25% 100% 0% 100% 41% 100%	2.9 20.8 10 74.7 0.013 2.4 0.0011 6.53 3.6	1950 160 93 17 227 0.2 14.3 0.55 11.4 18	320 97.8 37.2 131 8.96 0.10 8.53 7.70	27 111 33.5 129 8.3 0.05 8.44 6.35	563 38.3 14.4 37.2 3.13 0.114 1.46 3.98	1.76 0.39 0.39 0.28 0.35 1.15 0.17 0.52	143 310 -313 -357 -143 -226 -247 -134	0.0742 0.0001 0.0000 0.0631 0.0011 0.0020 0.0699 0.0037	no trendPOSITIVENEGATIVENEGATIVEno trendNEGATIVENEGATIVENEGATIVENEGATIVEno trendno trend	7.78 6.54 -3.16 -11.0 -0.360 -0.0017 -0.316 -0.347
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardnessMW-702 QALIronMW-702 QALMagnesiumMW-702 QALMagneseMW-702 QALField pHMW-702 QALPotassiumMW-702 QALSodium	38 37 36 36 36 37 37 37 37 38 38 36 37	0 2 0 27 0 37 0 22 0 0 0 0	100% 95% 100% 25% 100% 100% 100% 100% 100%	2.9 20.8 10 74.7 0.013 2.4 0.0011 6.53 3.6 17	1950 160 93 17 227 0.2 14.3 0.55 11.4 18 60	320 97.8 37.2 131 8.96 0.10 8.53 7.70 37.3	27 111 33.5 129 8.3 0.05 8.44 6.35 38	563 38.3 14.4 37.2 3.13 0.114 1.46 3.98 10.8	1.76 0.39 0.39 0.28 0.35 1.15 0.17 0.52 0.29	143 310 -313 -357 -143 -226 -247 -134 223	0.0742 0.0001 0.0000 0.0631 0.0011 0.0020 0.0699 0.0037	no trendPOSITIVENEGATIVENEGATIVEno trendNEGATIVENEGATIVENEGATIVENEGATIVENO trendPOSITIVE	7.78 6.54 -3.16 -11.0 -0.360 -0.0017 -0.316 -0.347 1.90
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardnessMW-702 QALIronMW-702 QALMagnesiumMW-702 QALMagneseMW-702 QALField pHMW-702 QALPotassiumMW-702 QALSodiumMW-702 QALSodium	38 37 36 36 36 37 37 37 37 38 36 37 37	0 2 0 27 0 37 0 22 0 0 0 0 0	100% 95% 100% 25% 100% 100% 100% 100% 100%	2.9 20.8 10 74.7 0.013 2.4 0.0011 6.53 3.6 17 48.2	1950 160 93 17 227 0.2 14.3 0.55 11.4 18 60 130	320 97.8 37.2 131 8.96 0.10 8.53 7.70 37.3 80.9	27 111 33.5 129 8.3 0.05 8.44 6.35 38 88	563 38.3 14.4 37.2 3.13 0.114 1.46 3.98 10.8 23.1	1.76 0.39 0.39 0.28 0.35 1.15 0.17 0.52 0.29 0.29	143 310 -313 -357 -143 -226 -247 -134 223 -402	0.0742 0.0001 0.0000 0.0631 0.0011 0.0020 0.0699 0.0037 0.0000	no trendPOSITIVENEGATIVENEGATIVEno trendNEGATIVENEGATIVENEGATIVENEGATIVENO trendPOSITIVENEGATIVE	7.78 6.54 -3.16 -11.0 -0.360 -0.0017 -0.347 1.90 -6.72
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardnessMW-702 QALIronMW-702 QALMagnesiumMW-702 QALManganeseMW-702 QALField pHMW-702 QALPotassiumMW-702 QALSodiumMW-702 QALSulfateMW-702 UFBBicarbonate alkalinity	38 37 36 36 37 37 37 37 38 38 36 37 37 37	0 2 0 27 0 37 0 22 0 0 0 0 0 0	100% 95% 100% 25% 100% 100% 100% 100% 100% 100%	2.9 20.8 10 74.7 0.013 2.4 0.0011 6.53 3.6 17 48.2 87.2	1950 160 93 17 227 0.2 14.3 0.55 11.4 18 60 130 100	320 97.8 37.2 131 8.96 0.10 8.53 7.70 37.3 80.9 92.4	27 111 33.5 129 8.3 0.05 8.44 6.35 38 86 92.2	563 38.3 14.4 37.2 3.13 0.114 1.46 3.98 10.8 23.1 3.04	1.76 0.39 0.39 0.28 0.35 1.15 0.17 0.52 0.29 0.29 0.29 0.03	143 310 -313 -357 -143 -226 -247 -134 223 -402 18	0.0742 0.0001 0.0000 0.0631 0.0011 0.0020 0.0699 0.0037 0.0000 0.8090	no trendPOSITIVENEGATIVENEGATIVEno trendNEGATIVENEGATIVENEGATIVENO trendPOSITIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVE	7.78 6.54 -3.16 -11.0 -0.360 -0.0017 -0.316 -0.347 1.90 -6.72 0.078
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardnessMW-702 QALIronMW-702 QALMagnesiumMW-702 QALManganeseMW-702 QALField pHMW-702 QALPotassiumMW-702 QALSodiumMW-702 QALSulfateMW-702 UFBBicarbonate alkalinityMW-702 UFBCalcium	38 37 36 36 37 37 37 37 38 36 37 37 35 36	0 2 0 27 0 37 0 22 0 0 0 0 0 0 0 0 0	100% 95% 100% 25% 100% 100% 100% 100% 100% 100% 100% 10	2.9 20.8 10 74.7 0.013 2.4 0.0011 6.53 3.6 17 48.2 87.2 87.2 26	1950 160 93 17 227 0.2 14.3 0.55 11.4 18 60 130 100 34	320 97.8 37.2 131 8.96 0.10 8.53 7.70 37.3 80.9 92.4 30.4	27 111 33.5 129 8.3 0.05 8.44 6.35 38 86 92.2	563 38.3 14.4 37.2 3.13 0.114 1.46 3.98 10.8 23.1 3.04	1.76 0.39 0.39 0.28 0.35 1.15 0.17 0.52 0.29 0.29 0.29 0.03	143 310 -313 -357 -143 -226 -247 -134 223 -402 18 161	0.0742 0.0001 0.0000 0.0631 0.0011 0.0020 0.0699 0.0037 0.0000 0.8090	no trendPOSITIVENEGATIVENEGATIVEno trendNEGATIVENEGATIVENEGATIVENO trendPOSITIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVE	7.78 6.54 -3.16 -11.0 -0.360 -0.0017 -0.316 -0.347 1.90 -6.72 0.078
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardnessMW-702 QALIronMW-702 QALMagnesiumMW-702 QALMagneseMW-702 QALPotassiumMW-702 QALPotassiumMW-702 QALSodiumMW-702 QALSodiumMW-702 QALSodiumMW-702 QALSodiumMW-702 UFBBicarbonate alkalinityMW-702 UFBCalciumMW-702 UFBChloride	38 37 36 36 37 37 37 37 38 36 37 37 35 36 37	0 2 0 27 0 37 0 22 0 0 0 0 0 0 0 37	100% 95% 100% 25% 100% 100% 100% 100% 100% 100% 100% 0%	2.9 20.8 10 74.7 0.013 2.4 0.0011 6.53 3.6 17 48.2 87.2 26 0.72	1950 160 93 17 227 0.2 14.3 0.55 11.4 18 60 130 100 34 10	320 97.8 37.2 131 8.96 0.10 8.53 7.70 37.3 80.9 92.4 30.4 	27 111 33.5 129 8.3 0.05 8.44 6.35 38 86 92.2 30.5 	563 38.3 14.4 37.2 3.13 0.114 1.46 3.98 10.8 23.1 3.04 1.93	1.76 0.39 0.39 0.28 0.35 1.15 0.17 0.52 0.29 0.29 0.29 0.03 0.06 	143 310 -313 -357 -143 -226 -247 -134 223 -402 18 161 	0.0742 0.0001 0.0000 0.0631 0.0011 0.0020 0.0699 0.0037 0.0000 0.8090 0.0291 	no trendPOSITIVENEGATIVENEGATIVEno trendNEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVEPOSITIVENO trendPOSITIVENO trendPOSITIVE	7.78 6.54 -3.16 -11.0 -0.360 -0.0017 -0.316 -0.347 1.90 -6.72 0.078 0.318
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardnessMW-702 QALIronMW-702 QALMagnesiumMW-702 QALMagnesiumMW-702 QALMagneseMW-702 QALField pHMW-702 QALSodiumMW-702 QALSodiumMW-702 QALSodiumMW-702 QALSoliateMW-702 UFBBicarbonate alkalinityMW-702 UFBCalciumMW-702 UFBChlorideMW-702 UFBHardness	38 37 36 36 37 37 37 37 38 36 37 37 35 36 37 35	0 2 0 27 0 37 0 22 0 0 0 0 0 0 0 37 0	100% 95% 100% 25% 100% 100% 100% 100% 100% 100% 100% 10	2.9 20.8 10 74.7 0.013 2.4 0.0011 6.53 3.6 17 48.2 87.2 26 0.72 107	1950 160 93 17 227 0.2 14.3 0.55 11.4 18 60 130 100 34 10 125	320 97.8 37.2 131 8.96 0.10 8.53 7.70 37.3 80.9 92.4 30.4 117	27 111 33.5 129 8.3 0.05 8.44 6.35 38 86 92.2 30.5 118	563 38.3 14.4 37.2 3.13 0.114 1.46 3.98 10.8 23.1 3.04 1.93 4.18	1.76 0.39 0.39 0.28 0.35 1.15 0.17 0.52 0.29 0.29 0.29 0.29 0.03 0.06 0.04	143 310 -313 -357 -143 -226 -247 -134 223 -402 18 161 56	0.0742 0.0001 0.0000 0.0631 0.0011 0.0020 0.0699 0.0037 0.0000 0.8090 0.0291 0.4316	no trendPOSITIVENEGATIVENEGATIVEno trendNEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVEPOSITIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENO trendNO trendNO trendNO trend	7.78 6.54 -3.16 -11.0 -0.360 -0.0017 -0.316 -0.347 1.90 -6.72 0.078 0.318 0.174
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardnessMW-702 QALIronMW-702 QALMagnesiumMW-702 QALMagneseMW-702 QALManganeseMW-702 QALField pHMW-702 QALSodiumMW-702 QALSodiumMW-702 QALSulfateMW-702 QALSulfateMW-702 UFBCalciumMW-702 UFBChlorideMW-702 UFBHardnessMW-702 UFBHardnessMW-702 UFBIron	38 37 36 36 37 37 37 37 38 36 37 37 35 36 37 35 35 35	0 2 0 27 0 37 0 22 0 0 0 0 0 0 0 0 0 0 37 0 1	100% 95% 100% 25% 100% 100% 100% 100% 100% 100% 100% 10	2.9 20.8 10 74.7 0.013 2.4 0.0011 6.53 3.6 17 48.2 87.2 26 0.72 26 0.72 107 0.2	1950 160 93 17 227 0.2 14.3 0.55 11.4 18 60 130 100 34 10 125 1.28	320 97.8 37.2 131 8.96 0.10 8.53 7.70 37.3 80.9 92.4 30.4 117 0.75	27 111 33.5 129 8.3 0.05 8.44 6.35 8.44 6.35 38 86 92.2 30.5 118 0.73	563 38.3 14.4 37.2 3.13 0.114 1.46 3.98 10.8 23.1 3.04 1.93 4.18 0.209	1.76 0.39 0.39 0.28 0.35 1.15 0.17 0.52 0.29 0.29 0.29 0.29 0.03 0.06 0.04 0.28	143 310 -313 -357 -143 -226 -247 -134 223 -402 18 161 56 36	0.0742 0.0001 0.0000 0.0631 0.0011 0.0020 0.0699 0.0037 0.0000 0.8090 0.0291 0.4316 0.6190	no trendPOSITIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVEPOSITIVENEGATIVENEGATIVENEGATIVENEGATIVENo trendPOSITIVEno trendNo trendno trendno trendno trendno trendno trend	7.78 6.54 -3.16 -11.0 -0.360 -0.0017 -0.347 1.90 -6.72 0.078 0.318 0.174 0.0060
MW-701 UFBSulfateMW-702 QALBicarbonate alkalinityMW-702 QALCalciumMW-702 QALChlorideMW-702 QALHardnessMW-702 QALIronMW-702 QALMagnesiumMW-702 QALMagneseMW-702 QALField pHMW-702 QALPotassiumMW-702 QALSodiumMW-702 QALSodiumMW-702 QALSulfateMW-702 QALSoliumMW-702 UFBBicarbonate alkalinityMW-702 UFBCalciumMW-702 UFBHardnessMW-702 UFBIronMW-702 UFBIronMW-702 UFBMagnesium	38 37 36 36 37 37 37 37 38 36 37 37 35 35 35 35 35 35 36	0 2 0 27 0 27 0 22 0 0 0 0 0 0 0 0 0 0 0	100% 95% 100% 25% 100% 100% 100% 100% 100% 100% 100% 10	2.9 20.8 10 74.7 0.013 2.4 0.0011 6.53 3.6 17 48.2 87.2 26 0.72 107 0.2 8.3	1950 160 93 17 227 0.2 14.3 0.55 11.4 18 60 130 100 34 10 125 1.28 10.5	320 97.8 37.2 131 8.96 0.10 8.53 7.70 37.3 80.9 92.4 30.4 117 0.75 9.41	27 111 33.5 129 8.3 0.05 8.44 6.35 8.44 6.35 38 86 92.2 30.5 118 0.73 9.55	563 38.3 14.4 37.2 3.13 0.114 1.46 3.98 10.8 23.1 3.04 1.93 4.18 0.209 0.481	1.76 0.39 0.39 0.28 0.35 1.15 0.17 0.52 0.29 0.28 0.28 0.28 0.52 0.29 0.03 0.05 0.29 0.29 0.03 0.05 0.29 0.29 0.03 0.03 0.05 0.03 0.05 0.03 0.05 0.29 0.03 0.03 0.05 0.03 0.03 0.05 0.03 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.05 0.03 0.05 0.03 0.05 0.05 0.05 0.05 0.03 0.05	143 310 -313 -357 -143 -226 -247 -134 223 -402 18 161 56 36 65	0.0742 0.0001 0.0000 0.0631 0.0011 0.0020 0.0699 0.0037 0.0000 0.8090 0.0291 0.4316 0.6190 0.3803	no trendPOSITIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENEGATIVENo trendPOSITIVEno trendno trend	7.78 6.54 -3.16 -11.0 -0.360 -0.0017 -0.316 -0.347 1.90 -6.72 0.078 0.318 0.174 0.0060 0.028

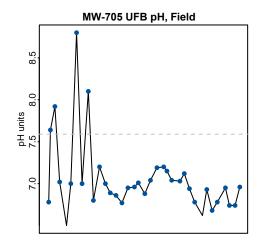
			1										
MW-702 UFB Potassium	36			2.6	3.8	3.07	3.05	0.244	0.08	-87	0.2332	no trend	-0.016
MW-702 UFB Sodium	35			2.7	3.4	3.09	3.1	0.192	0.06	126	0.0719	no trend	0.029
MW-702 UFB Sulfate	37		100%	28.7	37.4	33.1	33.2	1.85	0.06	-20	0.8029	no trend	0
MW-703 DBA Bicarbonate alkalir				30	92	66.4	69.0	15.4	0.23	250	0.0011	POSITIVE	3.16
MW-703 DBA Calcium	37			4.1	29.5	19.9	23.6	7.77	0.39	257	0.0008	POSITIVE	1.51
MW-703 DBA Chloride	38			13.9	20	16.4	15.8	1.8	0.11	-475	0.0000	NEGATIVE	-0.604
MW-703 DBA Hardness	37			29	137	94.4	100	26.3	0.28	81	0.2951	no trend	2.15
MW-703 DBA Iron	38			0.2	1.7								
MW-703 DBA Magnesium	37			4.2	16	10.3	10.3	2.69	0.26	-124	0.1074	no trend	-0.286
MW-703 DBA Manganese	38			0.0011	0.059								
MW-703 DBA Field pH	34			8.14	10.68	9.02	9.10	0.496	0.05	-124	0.0681	no trend	-0.053
MW-703 DBA Potassium	37		100%	3.1	29	13.9	14	6.91	0.50	-196	0.0107	NEGATIVE	-1.17
MW-703 DBA Sodium	37			6.5	15	10.3	9.7	2.63	0.26	-303	0.0001	NEGATIVE	-0.682
MW-703 DBA Sulfate	36	6 1	97%	1	236	37.3	35.0	38.6	1.03	140	0.0582	no trend	2.48
MW-703 LLA Bicarbonate alkalir	ity 37	7 0	100%	63.4	87	77.4	77.2	5.92	0.08	-134	0.0818	no trend	-0.772
MW-703 LLA Calcium	36	6 0	100%	16	35	25.2	25.3	3.68	0.15	-144	0.0509	no trend	-0.287
MW-703 LLA Chloride	36	6 1	97%	10	75	22.7	12	19.9	0.88	-309	0.0000	NEGATIVE	-2.04
MW-703 LLA Hardness	36	6 0	100%	74.2	135	107	108	13.3	0.12	-244	0.0009	NEGATIVE	-2.63
MW-703 LLA Iron	35	5 3	91%	0.2	1.2	0.58	0.583	0.222	0.38	-225	0.0015	NEGATIVE	-0.040
MW-703 LLA Magnesium	36	6 0	100%	8.3	12	10.1	10	0.939	0.09	-139	0.0588	no trend	-0.119
MW-703 LLA Manganese	37	7 6	84%	0.05	0.094	0.068	0.071	0.013	0.20	-107	0.1636	no trend	-0.0010
MW-703 LLA Field pH	38	3 0	100%	8	9.19	8.47	8.39	0.358	0.04	-182	0.0228	NEGATIVE	-0.051
MW-703 LLA Potassium	36	6 0	100%	2.7	7.6	4.33	3.75	1.36	0.31	-131	0.0762	no trend	-0.178
MW-703 LLA Sodium	37	7 0	100%	5.9	53	14.5	8.3	12.1	0.83	-154	0.0452	NEGATIVE	-1.16
MW-703 LLA Sulfate	37	7 0	100%	5.6	134	31.5	31.9	19.1	0.60	60	0.4400	no trend	0.289
MW-703 QAL Bicarbonate alkalir	ity 37	7 0	100%	46.8	91	58.3	54.5	11.6	0.20	-338	0.0000	NEGATIVE	-2.45
MW-703 QAL Calcium	37			13	33	19.3	18.6	4.00	0.21	-160	0.0373	NEGATIVE	-0.290
MW-703 QAL Chloride	37	7 37	0%	0.72	10								
MW-703 QAL Hardness	35	5 0	100%	64	119	81.0	78.3	12.0	0.15	-145	0.0407	NEGATIVE	-1.18
MW-703 QAL Iron	37	7 35	5%	0.2	0.25								
MW-703 QAL Magnesium	37	7 0	100%	5.9	9.7	7.78	7.9	0.874	0.11	9	0.9164	no trend	0
MW-703 QAL Manganese	37	7 31	16%	0.05	0.091								
MW-703 QAL Field pH	38		100%	5.53	8.01	6.23	6.08	0.670	0.11	-489	0.0000	NEGATIVE	-0.161
MW-703 QAL Potassium	37	7 1	97%	1.3	2.7	1.66	1.6	0.314	0.19	-249	0.0009	NEGATIVE	-0.045
MW-703 QAL Sodium	37			1.7	7.8	2.83	2	1.64	0.58	-472	0.0000	NEGATIVE	-0.265
MW-703 QAL Sulfate	37	7 0	100%	12	178	28.9	24.5	25.9	0.90	-45	0.5646	no trend	-0.301
MW-703 UFB Bicarbonate alkalir	ity 36	6 0	100%	75	94	81.6	81.2	4.05	0.05	-72	0.3323	no trend	-0.223
MW-703 UFB Calcium	36		100%	28	35	31.7	31.6	1.35	0.04	143	0.0514	no trend	0.119
MW-703 UFB Chloride	37	7 37	0%	0.72	10								
MW-703 UFB Hardness	35	5 0	100%	118	147	125	124	6.35	0.05	-63	0.3763	no trend	-0.261
	1					I	I						

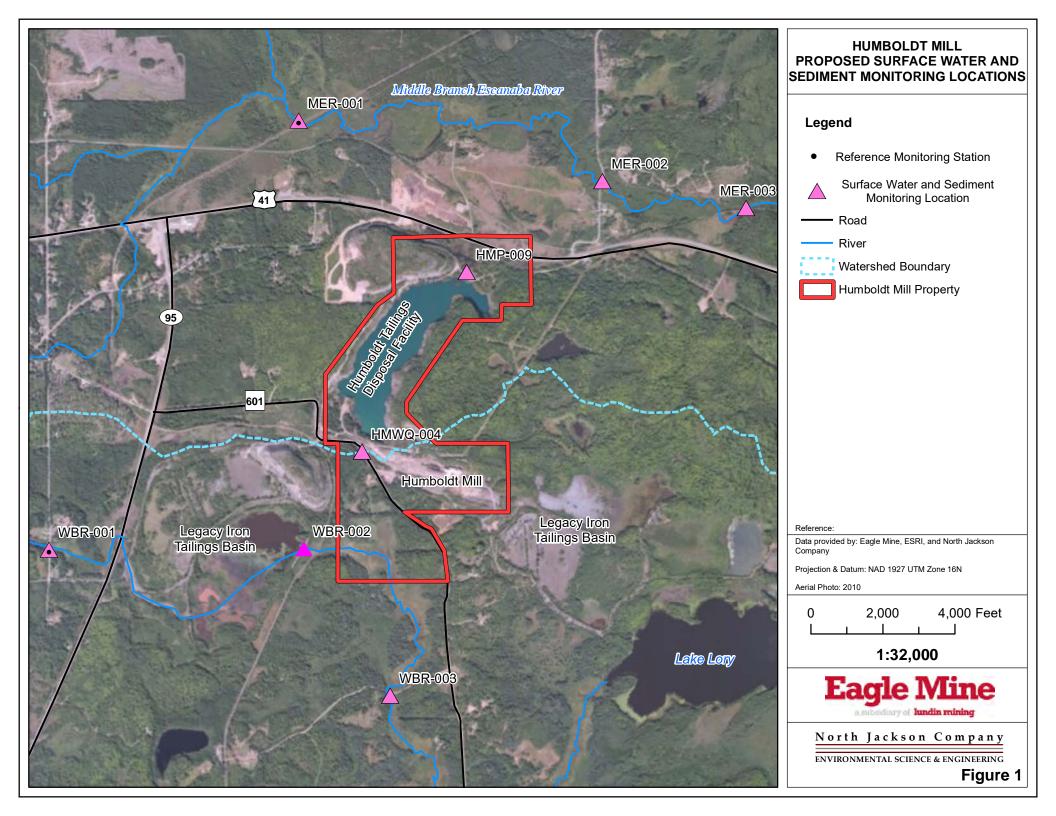

MW-703 UFB	Iron	37	1	97%	0.2	1.97	1.31	1.4	0.416	0.32	199	0.0095	POSITIVE	0.069
	Magnesium	36	0	100%	9.6	11.1	10.5	10.5	0.450	0.04	-21	0.7831	no trend	0.000
	Manganese	34	1	97%	0.13	0.25	0.18	0.183	0.023	0.13	283	0.0000		0.0060
	Field pH	36	0	100%	6.3		7.99	8	0.413	0.05	-76	0.3068	no trend	-0.025
	Potassium	36	1	97%	2.1	3.4	2.39	2.3	0.293	0.12	-400		NEGATIVE	-0.052
	Sodium	36	0	100%	2.7	5.5	3.10	3	0.517	0.17	-100	0.1610		0
	Sulfate	37	0	100%	38.5	532	58.6	45	80.0	1.37	143	0.0627	no trend	0.268
MW-704 DBA	Bicarbonate alkalinity	37	0	100%	83	144	122	126	15.3	0.13	284	0.0002	POSITIVE	2.95
MW-704 DBA	Calcium	37	0	100%	16	28.6	22.3	22.4	2.82	0.13	383	0.0000	POSITIVE	0.678
MW-704 DBA 0	Chloride	38	38	0%	0.72	10								
MW-704 DBA	Hardness	37	0	100%	76	129	106	106	11.0	0.10	292	0.0001	POSITIVE	2.10
MW-704 DBA	Iron	38	3	92%	0.2	0.95	0.67	0.72	0.195	0.29	278	0.0005	POSITIVE	0.037
MW-704 DBA	Magnesium	37	0	100%	9.3	14.2	11.3	11.3	1.09	0.10	228	0.0029	POSITIVE	0.184
MW-704 DBA	Manganese	38	18	53%	0.0011	0.075	0.053	0.05095	0.011	0.20	334	0.0000	POSITIVE	0.0009
MW-704 DBA F	Field pH	38	0	100%	7.6	9.23	8.39	8.41	0.383	0.05	-320	0.0001	NEGATIVE	-0.086
MW-704 DBA F	Potassium	38	1	97%	2.3	3.5	2.73	2.7	0.253	0.09	7	0.9390	no trend	0
MW-704 DBA	Sodium	38	0	100%	9.1	13	10.9	11	0.803	0.07	-15	0.8589	no trend	0
MW-704 DBA	Sulfate	38	25	34%	0.86	4.6								
MW-704 LLA E	Bicarbonate alkalinity	39	0	100%	55	224	136	135	42.6	0.31	471	0.0000	POSITIVE	13.0
MW-704 LLA	Calcium	39	0	100%	11	70.4	34.0	28	17.9	0.52	454	0.0000	POSITIVE	5.56
MW-704 LLA	Chloride	39	22	44%	10	75.8	20.1	10	19.6	0.98	502	0.0000	POSITIVE	1.91
MW-704 LLA	Hardness	38	0	100%	66	289	155	143	64.8	0.42	453	0.0000	POSITIVE	19.7
MW-704 LLA	Iron	38	4	89%	0.2	4.14	1.27	0.934	1.09	0.85	482	0.0000	POSITIVE	0.279
	Magnesium	39	0	100%	9.2	27.5	16.2	15	5.11	0.32	475	0.0000	POSITIVE	1.64
	Manganese	39	11	72%	0.05	0.293	0.11	0.08	0.075	0.66	420	0.0000	POSITIVE	0.022
	Field pH	37	0	100%	7.66	9.2	8.32	8.24	0.426	0.05	-453	0.0000		-0.134
	Potassium	39	0	100%	3.8	11	6.47	6.4	1.86	0.29	183	0.0275	POSITIVE	0.225
	Sodium	37	0	100%	3.6	9.3	5.29	5	1.39	0.26	338	0.0000		0.265
	Sulfate	39	0	100%	2.2	22	10.5	10.4	4.19	0.40	-64	0.4458	no trend	-0.296
	Bicarbonate alkalinity	38	0	100%	48.6	283	120	114	56.6	0.47	-78	0.3326	no trend	-3.24
	Calcium	38	0	100%	16.2	84.8	38.8	35.1	16.5	0.43	181	0.0236	POSITIVE	2.74
	Chloride	38	6	84%	10	269	46.3	18.3	60.1	1.30	364	0.0000	POSITIVE	2.64
	Hardness	38	0	100%	63.1	344	155	141	66.2	0.43	197	0.0137	POSITIVE	11.6
	Iron	38	12	68%	0.013	103	14.6	3.55	24.7	1.69	-176	0.0258		-0.601
	Magnesium	38	0	100%	5.5	32.2	12.7	11	6.58	0.52	335	0.0000	POSITIVE	1.61
	Manganese	38	2	95%	0.05	7.2	2.46	1.58	2.16	0.88	-71	0.3787	no trend	-0.069
	Field pH	38	0	100%	5.29	6.51	5.86	5.8	0.281	0.05	-218	0.0063		-0.038
	Potassium	36	0	100%	1.6	6.3	2.97	2.7	1.02	0.34	237	0.0013		0.174
	Sodium	38	0	100%	2.5	48.6	19.6	18.8	10.9	0.56	225	0.0049	POSITIVE	1.95
	Sulfate	38	1	97%	2.5	96.8	30.2	23.6	21.5	0.30	153	0.0560	no trend	1.62


MW-704 UFB	Bicarbonate alkalinity	34	0	100%	91	190	145	145	26.1	0.18	-27	0.6995	no trend	-0.751
MW-704 UFB (Calcium	33	0	100%	10	110	52.9	50.2	26.2	0.49	259	0.0001	POSITIVE	7.40
MW-704 UFB (Chloride	34	8	76%	10	434	78.4	25	105	1.34	372	0.0000	POSITIVE	8.18
MW-704 UFB	Hardness	33	0	100%	68	425	198	184	102	0.51	287	0.0000	POSITIVE	28.6
MW-704 UFB	Iron	33	0	100%	0.21	79.8	33.9	35.3	25.1	0.74	286	0.0000	POSITIVE	6.86
MW-704 UFB	Magnesium	33	0	100%	1.8	37	14.9	13.1	9.87	0.66	334	0.0000	POSITIVE	2.87
MW-704 UFB	Manganese	32	0	100%	0.089	2.17	1.00	0.915	0.539	0.54	217	0.0005	POSITIVE	0.141
MW-704 UFB F	Field pH	33	2	94%	6.26	7.28	6.82	6.82	0.231	0.03	-68	0.2989	no trend	-0.018
MW-704 UFB F	Potassium	34	0	100%	0.81	5.5	3.25	3.3	1.13	0.35	105	0.1219	no trend	0.120
MW-704 UFB S	Sodium	34	0	100%	6.2	70.4	26.8	21.0	18.6	0.70	184	0.0067	POSITIVE	2.90
MW-704 UFB S	Sulfate	31	0	100%	3.3	47.4	16.8	10.6	14.0	0.83	-122	0.0396	NEGATIVE	-0.891
MW-705 QAL	Bicarbonate alkalinity	37	0	100%	31.1	90	55.2	56.0	12.1	0.22	-99	0.1997	no trend	-0.927
MW-705 QAL 0	Calcium	38	0	100%	11.7	24	16.8	17	3.17	0.19	-117	0.1440	no trend	-0.367
MW-705 QAL	Chloride	38	0	100%	15.8	83.9	43.6	38.9	18.9	0.43	205	0.0103	POSITIVE	3.60
MW-705 QAL	Hardness	38	0	100%	48.1	109	75.0	74.0	14.3	0.19	-191	0.0169	NEGATIVE	-2.55
MW-705 QAL	Iron	38	0	100%	1.9	13.6	8.86	8.86	2.16	0.24	92	0.2524	no trend	0.125
MW-705 QAL	Magnesium	38	0	100%	4.6	11	7.37	7.25	1.49	0.20	-164	0.0401	NEGATIVE	-0.207
MW-705 QAL	Manganese	38	5	87%	0.05	2.5	0.91	0.879	0.417	0.46	-52	0.5211	no trend	-0.011
MW-705 QAL	Field pH	38	0	100%	5.62	6.7	6.17	6.16	0.234	0.04	-39	0.6323	no trend	-0.0061
MW-705 QAL	Potassium	38	1	97%	1.8	3.2	2.53	2.55	0.316	0.12	43	0.5945	no trend	0
MW-705 QAL	Sodium	38	0	100%	4.3	38.3	17.9	14	8.63	0.48	492	0.0000	POSITIVE	2.61
MW-705 QAL 8	Sulfate	36	0	100%	1.5	64.7	7.27	5.05	10.3	1.41	99	0.1817	no trend	0.292
	Bicarbonate alkalinity	38	0	100%	73.6		88.5	85.5	14.4	0.16	-258	0.0012	NEGATIVE	-1.53
	Calcium	39	0	100%	18	36.9	26.4	25.9	5.40	0.20	557	0.0000	POSITIVE	1.91
MW-705 UFB	Chloride	39	9	77%	10	69.1	33.0	31.9	19.9	0.60	688	0.0000	POSITIVE	6.65
MW-705 UFB	Hardness	38	0	100%	92		123	121	21.4	0.17	521	0.0000	POSITIVE	7.27
MW-705 UFB	Iron	39	0	100%	0.68	15.7	9.01	8.77	2.78	0.31	323	0.0001	POSITIVE	0.571
MW-705 UFB	Magnesium	39	0	100%	9	17.8	13.2	13.3	2.49	0.19	557	0.0000	POSITIVE	0.838
MW-705 UFB	Manganese	37	0	100%	0.53	1.32	0.93	0.9	0.222	0.24	516	0.0000	POSITIVE	0.071
MW-705 UFB	Field pH	36	0	100%	6.5	8.8	7.05	6.96	0.437	0.06	-151	0.0408	NEGATIVE	-0.031
MW-705 UFB	Potassium	39	0	100%	3.1	4.3	3.62	3.6	0.295	0.08	251	0.0022	POSITIVE	0.050
MW-705 UFB	Sodium	39	0	100%	2.4	4.9	3.31	3.1	0.692	0.21	484	0.0000	POSITIVE	0.195
MW-705 UFB S	Sulfate	39	0	100%	2.4	13	5.51	4.2	3.24	0.59	-372	0.0000	NEGATIVE	-0.654
MW-706 QAL	Bicarbonate alkalinity	36	0	100%	67.8	120	82.4	78.7	12.8	0.16	-126	0.0884	no trend	-1.60
MW-706 QAL (Calcium	36	0	100%	55.7	110	76.3	68.9	15.7	0.21	-526	0.0000	NEGATIVE	-5.31
MW-706 QAL 0	Chloride	38	0	100%	86	153	125	131	21.0	0.17	318	0.0001	POSITIVE	5.47
MW-706 QAL	Hardness	38	0	100%	6	503	239	260	135	0.57	-109	0.1742	no trend	-6.06
MW-706 QAL I	Iron	36	0	100%	1.6	7.8	3.71	3.14	1.68	0.45	-556	0.0000	NEGATIVE	-0.584
MW-706 QAL	Magnesium	36	0	100%	23	37	28.9	27.3	4.00	0.14	-450	0.0000	NEGATIVE	-1.29
MW-706 QAL	Manganese	37	3	92%	9.37	25	14.7	14	4.54	0.31	-464	0.0000	NEGATIVE	-1.19


MW-706 QAL Fiel	eld pH	38	0	100%	5.52	7.01	5.98	5.87	0.369	0.06	-396	0.0000	NEGATIVE	-0.090
MW-706 QAL Pota	tassium	37	0	100%	4	5.2	4.57	4.6	0.249	0.05	-15	0.8521	no trend	0
MW-706 QAL Sod	dium	35	0	100%	24	58.8	42.3	44.9	9.31	0.22	413	0.0000	POSITIVE	3.00
MW-706 QAL Sulf	lfate	38	0	100%	124	430	201	188	81.5	0.40	-575	0.0000	NEGATIVE	-19.1
MW-707 QAL Bica	arbonate alkalinity	37	0	100%	145	170	157	158	6.39	0.04	61	0.4267	no trend	0
MW-707 QAL Calo	lcium	37	0	100%	33	45	41.5	42	2.19	0.05	177	0.0210	POSITIVE	0.270
MW-707 QAL Chlo	loride	37	37	0%	0.72	10								
MW-707 QAL Har	rdness	36	0	100%	145	160	153	153	4.08	0.03	25	0.7418	no trend	0
MW-707 QAL Iron	n	37	0	100%	3.41	7.2	4.82	4.44	0.941	0.20	-476	0.0000	NEGATIVE	-0.289
MW-707 QAL Mag	ignesium	37	0	100%	10.7	14	11.6	11.5	0.662	0.06	-264	0.0005	NEGATIVE	-0.128
MW-707 QAL Mar	inganese	37	2	95%	0.05	1.2	0.92	0.939	0.171	0.19	-117	0.1285	no trend	-0.0066
MW-707 QAL Fiel	eld pH	38	0	100%	6.55	7.5	6.97	6.98	0.192	0.03	107	0.1820	no trend	0.013
MW-707 QAL Pota	tassium	37	1	97%	2.1	3.2	2.38	2.4	0.201	0.08	-221	0.0032	NEGATIVE	-0.029
MW-707 QAL Sod	dium	36	0	100%	2.6	3.9	2.94	2.95	0.250	0.09	-327	0.0000	NEGATIVE	-0.052
MW-707 QAL Sulf	lfate	37	16	57%	0.86	9.8	3.85	3.2	2.94	0.76	-413	0.0000	NEGATIVE	-0.893
MW-9R Bica	arbonate alkalinity	34	2	94%	2	82	40.1	37.0	19.9	0.50	-45	0.5141	no trend	-0.702
MW-9R Calo	lcium	34	0	100%	15.3	166	46.0	37.1	33.0	0.72	-225	0.0009	NEGATIVE	-5.40
MW-9R Chlo	loride	34	7	79%	10	190	34.6	16.8	45.4	1.31	-282	0.0000	NEGATIVE	-2.76
MW-9R Har	rdness	34	0	100%	59	609	186	147	131	0.70	-258	0.0001	NEGATIVE	-26.1
MW-9R Iron	n	34	20	41%	0.0155	29.7	1.63	0.2	5.06	3.10	-67	0.2714	no trend	0
MW-9R Mag	ignesium	34	0	100%	5.1	47.4	15.9	11.8	10.9	0.69	-257	0.0001	NEGATIVE	-2.27
MW-9R Mar	inganese	34	12	65%	0.05	4.3	0.36	0.066	0.770	2.11	-298	0.0000	NEGATIVE	-0.034
MW-9R Fiel	eld pH	35	0	100%	3.35	6.52	5.89	6.01	0.500	0.08	-34	0.6388	no trend	-0.0065
MW-9R Pota	tassium	34	0	100%	1.5	10.4	2.93	2.6	1.61	0.55	-229	0.0007	NEGATIVE	-0.249
MW-9R Sod	dium	34	0	100%	5.3	47	14.4	9.5	11.5	0.80	-305	0.0000	NEGATIVE	-1.79
MW-9R Sulf	lfate	34	0	100%	26.8	776	131	85.1	138	1.05	-228	0.0008	NEGATIVE	-17.2


-- Insufficient number or fraction of detected values for calculation


Bold: Exceeded benchmark for two or more consecutive quarters between 2021 Q4 and 2022 Q4



Detect
 Non–Detect
 2018 Benchmark

Appendix H

Humboldt Mill

Surface Water Map

Appendix I

Humboldt Mill

Surface Water Results

&

Benchmark Summary Table

2022 Mine Permit Surface Water Quality Monitoring Data Benchmark Summary Table Humboldt Mill

Location	Location Classification	Q1	Q2	Q3	Q4
HMWQ-004	Compliance - Mill Subwatershed	NM	NM	NM	NM
HMP-009	Compliance - HTDF Subwatershed	NM	pH, mercury, alkalinity bicarbonate, TSS	pH, iron, mercury, TSS	NM
MER-001	Reference - HTDF Subwatershed	pH, nitrate	copper	copper	рН
MER-002	Compliance - HTDF Subwatershed		manganese, zinc		pH , arsenic, iron, lead, mercury
MER-003	Compliance - HTDF Subwatershed	nitrate, sulfate, sodium	manganese, sodium, TSS		pH, copper
MER-004*	Monitoring - HTDF Subwatershed				
WBR-001	Reference - Mill Subwatershed	NM	manganese	aluminum, arsenic, barium, chromium, copper, iron, manganese, vanadium, zinc, alkalinity bicarbonate, potassium, TSS	iron, manganese, alkalinity bicarbonate, TSS
WBR-002	Compliance - Mill Subwatershed	arsenic, iron, potassium, TDS, TSS			pH, alkalinity bicarbonate
WBR-003	Compliance - Mill Subwatershed	alkalinity bicarbonate, calcium, magnesium, hardness	alkalinity bicarbonate	boron, TSS	pH , lead, TSS

Parameters listed in this table had values reported that were equal to or greater than a site-specific benchmark. Parameters in BOLD are instances in which the Department was notified because benchmarks deviations were identified at compliance monitoring locations for two consecutive seasonal (e.g. Q1 2021 and Q1 2022) sampling events. If the location is classified as background or reference, Department notification is not required for an exceedance.

Blank data cells indicate that no benchmark deviations occurred at the location during the specified sampling quarter.

NM = Not measured during the sampling event due to insufficient water volume or frozen conditions.

* Eagle added MER-004 as a monitoring location in 2020, however it is not considered a compliance monitoring location. No benchmarks have been established due to insufficient data.

Humboldt Mill 2022 Mine Permit Surface Water Quality Monitoring Data MER-001 (Reference - HTDF Subwatershed)

			MER-001 Seaso	nal Benchmarks		MER-001 2022 Quarterly Data							
		Q1	Q2	Q3	Q4			. ,					
		Winter Baseflow	Spring Snowmelt	Summer Baseflow	Fall Rain	Q1 2022 ^T	Q2 2022 ^T	Q3 2022 ^D	Q4 2022 ^T				
Parameter	Unit	Basenon	& Runoff	Duschow									
Field	-												
D.O.	ppm	-	-	-	-	12	7.2		13				
ORP	mV	-	-	-	-	108	101		112				
pH	SU	6.2-7.2	5.7-6.7	6.1-7.1	5.4-6.4	7.2	6.0	6.5	6.5				
Specific Conductance	uS/cm	-	-	-	-	67	56		41				
Temperature	С	-	-	-	-	0.19	18		0.68				
Turbidity	NTU	-	-	-	-	2.0	2.3		1.7				
Flow	cfs	-	-	-	-								
Metals	-												
Aluminum	ug/L	-	-	200	-			91					
Antimony	ug/L	-	-	3.5	-			< 1.0 U					
Arsenic	ug/L	3.6	4.0	2.8	1.8	<1.0	< 5.0 U	1.8	< 1.0 U				
Barium	ug/L	-	-	11	-			9.3					
Beryllium	ug/L	-	-	2.5	-			< 1.0 U					
Boron	ug/L	-	-	40	-			< 10.0 U					
Cadmium	ug/L	-	-	0.08	-								
Chromium	ug/L	-	-	1.1	-			< 1.0 U					
Cobalt	ug/L	-	-	0.38	-								
Copper	ug/L	0.62	0.98	0.68	1.6		0.78	2.4	0.58				
Iron	ug/L	2413	1206	3532	2136	1120	1430	2460	813				
Lead	ug/L	0.21	0.18	0.35	0.66		0.15	0.16	0.12				
Lithium	ug/L	-	-	32	-			< 8.0 U					
Manganese	ug/L	149	101	242	124	80	146	141	28				
Mercury	ng/L	5.8	6.9	8.1	4.6	2.2	4.34	3.1	3.4 H				
Molybdenum	ug/L	-	-	4	-			< 1.0 U					
Nickel	ug/L	1.1	0.68	1.5	0.74		0.82	0.87	< 0.50 U				
Selenium	ug/L	-	-	0.13	-								
Silver	ug/L	-	-	0.8	-			< 0.20 U					
Thallium	ug/L	-	-	1.5	-			< 1.0 U					
Vanadium	ug/L	-	-	4	-			< 1.0 U					
Zinc	ug/L	39	9.3	5.5	6.3		3.6	1.6	1.5				
Major Anions													
Alkalinity, Bicarbonate	mg/L	41	26	48	24	24.8	21	29	15				
Alkalinity, Carbonate	mg/L	8	8	8	8	< 2.0	< 2.0 U	< 0.50 U	< 1.00 U				
Chloride	mg/L	13	8.4	16	14	4.3	3.4	2.9	2.3				
Fluoride	mg/L	0.4	0.4	0.4	0.4	< 0.10	< 0.10 U	< 0.10 U	< 0.10 U				
Nitrogen, Ammonia	mg/L	2.0	2.0	2.0	2.0	0.04	< 0.025 U	< 0.025 U	< 0.025				
Nitrogen, Nitrate	mg/L	0.17	2.0	2.0	2.0	0.21	< 0.10 U	< 0.10 U	< 0.100 UH				
Nitrogen, Nitrite	mg/L	2.0	2.0	2.0	2.0	< 0.10	< 0.10 U	< 0.10 U	< 0.100 UH				
Sulfate	mg/L	9.0	4.0	4.0	6.4	2.7	2.2	1.1	2.0				
Sulfide	mg/L	20	20	20	20	< 0.20	< 0.20 U	< 0.20 U	< 0.20 U				
Major Cations													
Calcium	mg/L	14	7.6	15	10	6.9	6.0	8.0	4.5				
Magnesium	mg/L	3.8	2.4	4.1	3.0	2	1.6	2.0	1.3				
Potassium	mg/L	0.93	0.69	1.1	1.4	0.66	< 0.50 U	0.54	< 0.50 U				
Sodium	mg/L	6.7	5.1	8.5	6.7	2.5	2.4	2.2	1.7				
General													
Hardness	mg/L	51	31	59	44	26	22	29	17				
Total Dissolved Solids	mg/L	106	113	200	200	62	47	68	42				
Total Suspended Solids	mg/L	3.4	7.6	13	20	< 2.5	2.8	3.2	< 2.5 U				

Humboldt Mill 2022 Mine Permit Surface Water Quality Monitoring Data MER-002 (Compliance HTDF Subwatershed)

			MFR-002 Seaso	onal Benchmarks		MER-002 2022 Quarterly Data					
		Q1	Q2	Q3	Q4			additionly batta	1		
Parameter	Unit	Winter Baseflow	Spring Snowmelt & Runoff	Summer Baseflow	Fall Rain	Q1 2022 ^D	Q2 2022 ^D	Q3 2022 ^D	Q4 2022 ^D		
Field	Onic		& Runon								
D.O.	ppm	_	-	-	-	12	6.8		12		
ORP	mV	-	-	-	-	62	74		100		
pH	SU	6.2-7.2	5.7-6.7	5.9-6.9	5.3-6.3	6.6	6.4	6.6	6.5		
Specific Conductance	uS/cm	-	5.7 0.7	5.5 0.5	5.5 0.5	84	64		52		
Temperature	C	-	-	-	-	0.74	18		0.86		
Turbidity	NTU	-	-	-	-	2.5	2.9		1.9		
Flow	cfs	-	-	-	-						
Metals	cis										
Aluminum	ug/L	-	-	461	-			78			
Antimony	ug/L	-	-	3.5	-			< 1.0 U			
Arsenic	ug/L	2.8	0.6	5.3	2.1	< 1.0	< 5.0 U	2.2	2.2		
Barium	ug/L	-	-	21	-	< 1.0	< 5.0 0	11			
Beryllium	ug/L	-	-	2.5	-			< 1.0 U			
Boron	ug/L	-	-	40	-			< 10.0 U			
Cadmium	ug/L	-	-	0.08	-						
Chromium	ug/L	-	-	4.0	-			< 1.0 U			
Cobalt	ug/L	-	-	0.4	-						
Copper	ug/L	1.1	0.97	1.4	0.72		0.95	< 0.50 U	0.72		
Iron	ug/L	3081	1679	6901	2831	1540	2040	2970	3040		
Lead	ug/L	0.34	0.19	0.34	0.15		0.25	0.15	0.22		
Lithium	ug/L	-	-	1.4	-			< 8.0 U			
Manganese	ug/L	212	134	628	347	140	252	261	218		
Manganese	ng/L	5.1	6.6	7.5	4.3	2.4	4.5	3.6	4.7 H		
Molybdenum	ug/L	-	-	4.0	-			< 1.0 U			
Nickel	ug/L	1.2	0.71	2.1	0.82		0.98	0.80	0.62		
Selenium	ug/L	-	-	0.80	-						
Silver	ug/L	-	-	0.80	-			< 0.20 U			
Thallium	ug/L	-	-	4.0	-			< 1.0 U			
Vanadium	ug/L	-	-	4.7	-			< 1.0 U			
Zinc	ug/L	6.3	7.6	2.0	5.3		10	1.7	2.6		
Major Anions	ug/ 2	0.0	710	2.0	010						
Alkalinity, Bicarbonate	mg/L	46	25	54	31	27	22	31	16		
Alkalinity, Carbonate	mg/L	8.0	4.0	8.0	8.0	< 2.0	< 2.0 U	< 0.50 U	< 1.00 U		
Chloride	mg/L	14	7.4	17	18	6.1	4.2	3.7	4.2		
Fluoride	mg/L	0.40	0.40	0.40	0.40	< 0.10	< 0.10 U	< 0.10 U	< 0.10 U		
Nitrogen, Ammonia	mg/L	2.0	2.0	2.0	2.0	0.05	< 0.025 U	< 0.025 U	< 0.025 U		
Nitrogen, Nitrate	mg/L	0.52	0.21	2.0	2.0	0.21	< 0.10 U	< 0.10 U	< 0.100 UH		
Nitrogen, Nitrite	mg/L	2.0	2.0	2.0	2.0	< 0.10	< 0.10 U	< 0.10 U	< 0.100 UH		
Sulfate	mg/L	14	7.9	16	4.0	4.1	2.7	1.8	2.6		
Sulfide	mg/L	20	20	20	20	< 0.20	< 0.20 U	< 0.20 U	< 0.20 U		
Major Cations					-						
Calcium	mg/L	17	9.2	18	15	7.9	6.6	8.7	5.3		
Magnesium	mg/L	4.6	2.7	5.2	4.1	2.3	1.9	2.3	1.6		
Potassium	mg/L	1.3	0.68	1.4	1.6	0.82	0.55	0.67	0.57		
Sodium	mg/L	8.5	5.1	9.9	9.1	3.7	2.9	2.8	2.9		
General	- 10-										
Hardness	mg/L	60	34	70	53	29	24	31	20		
Total Dissolved Solids	mg/L	210	104	200	200	50	56	78 J	46		
Total Suspended Solids	mg/L	5.6	7.8	200	123	< 2.5	4.7	3.3	9.1		

Humboldt Mill 2022 Mine Permit Surface Water Quality Monitoring Data MER-003 (Compliance - HTDF Subwatershed)

		N	1ER-003 Seaso	nal Benchmarl	<s< th=""><th colspan="6">MER-003 2022 Quarterly Data</th></s<>	MER-003 2022 Quarterly Data					
		Q1	Q2	Q3	Q4						
Parameter	Unit	Winter Baseflow	Spring Snowmelt & Runoff	Summer Baseflow	Fall Rain	Q1 2022 ^D	Q2 2022 [™]	Q3 2022 ^D	Q4 2022 ^D		
Field		-									
D.O.	ppm	-	-	-	-	12	6.9		12		
ORP	mV	-	_	_	_	143	113		98		
рН	SU	6.3-7.3	5.6-6.6	5.7-6.7	5.4-6.4	7.3	6.0	6.6	6.6		
Specific Conductance	uS/cm	-	_	-	-	151	108		77		
Temperature	C	-	_	_	_	0.77	17		0.88		
Turbidity	NTU	-	-	-	-	2.9	2.9		2.3		
Flow	cfs	-	-	-	-						
Metals											
Aluminum	ug/L	-	-	200	-			77			
Antimony	ug/L	-	_	3.5	_			< 1.0 U			
Arsenic	ug/L	2.6	1.8	2.6	2.7	< 1.0	< 5.0 U	2.3	< 1.0 U		
Barium	ug/L	-	-	15	-			10			
Beryllium	ug/L	-	-	2.5	-			< 1.0 U			
Boron	ug/L	-	_	18	-			< 10.0 U			
Cadmium	ug/L	-	-	0.08	-						
Chromium	ug/L	-	-	4.0	-			< 1.0 U			
Cobalt	ug/L	-	_	0.4	_						
Copper	ug/L	2.9	0.97	0.65	0.67		0.86	0.53	0.72		
Iron	ug/L	3007	1873	3749	3493	1590	2010	2890	1020		
Lead	ug/L	0.35	0.24	0.18	1.9		0.18	0.20	0.14		
Lithium	ug/L	-	-	32	-			< 8.0 U			
Manganese	ug/L	223	157	273	326	164	256	230	51		
Mercury	ng/L	5.2	6.7	7.2	7.0	2.3	4.6	3.1	3.5 H		
Molybdenum	ug/L	-	-	4.0	-			< 1.0 U			
Nickel	ug/L	1.5	1.2	1.8	1.5		1.5	0.88	1.2		
Selenium	ug/L	-	-	0.28	-						
Silver	ug/L	-	_	0.20	-			< 0.20 U			
Thallium	ug/L	-	_	1.5	-			< 1.0 U			
Vanadium	ug/L	-	-	4.0	-			< 1.0 U			
Zinc	ug/L	7.5	8.5	2.7	13		3.6	3.4	1.5		
Major Anions	06/ L	7.5	0.5	2.7	15		5.0	5.4	1.5		
Alkalinity, Bicarbonate	mg/L	50	31	58	33	30	24	32	19		
Alkalinity, Carbonate	mg/L	8.0	8.0	8.0	8.0	< 2.0	< 2.0 U	< 0.50 U	< 1.00 U		
Chloride	mg/L	15	11	23	21	11	× 2.0 0 8.9	4.7	< 1.00 0 6.0		
Fluoride	mg/L	0.20	0.50	0.40	0.40	< 0.10	< 0.10 U	< 0.10 U	< 0.10 U		
Nitrogen, Ammonia	mg/L	2.0	2.0	2.0	2.0	0.13	0.100	< 0.10 U	< 0.10 0 0.14		
Nitrogen, Nitrate	mg/L	0.2	2.0	2.0	2.0	0.13	< 0.10 U	< 0.10 U	0.14 0.13 H		
Nitrogen, Nitrite	mg/L	2.0	2.0	2.0	2.0	< 0.10	< 0.10 U	< 0.10 U	< 0.100 UH		
Sulfate	mg/L	17	15	2.0	2.0	24	<u>14</u>	< 0.10 0 1.9	< 0.100 011 8.1		
Sulfide	mg/L	20	20	20	20	< 0.20	< 0.20 U	< 0.20 U	< 0.20 U		
Major Cations	iiig/ L	20	20	20	20	× 0.20	× 0.20 0	× 0.20 0	× 0.20 0		
Calcium	mg/L	17	11	18	13	9.0	7.1	8.8	6.0		
Magnesium	mg/L mg/L	4.7	3.3	5.8	4.2	3.0	2.2	2.3	1.8		
Potassium	mg/L mg/L	1.3	0.94	1.7	4.2	1.2	0.77	0.70	0.72		
Sodium	mg/L mg/L	8.8	7.4	1.7	9.3	1.2	9.8	3.4	6.8		
General	iiig/ L	0.0	7.4	12	5.5	13	5.0	5.4	0.0		
Hardness	mg/L	63	38	78	57	35	27	31	23		
Total Dissolved Solids	mg/L mg/L	134	38 54	200	200	102	73	76	51		
		1 134	J4	200	200	102	/3	/0	. 31		

Humboldt Mill 2022 Mine Permit Surface Water Quality Monitoring Data MER-004 (Monitoring - HTDF Subwatershed)

			MER-004 2022 Quarterly Benchmark								
					,						
		MER-004 Seasonal	Q1 2022 ^D	Q2 2022 [™]	Q3 2022 ^D	Q4 2022 ^D					
Parameter	Unit	Benchmark*									
Field	0	Denominant									
D.O.	ppm	_	12	7.0		12					
ORP	mV	-	78	88		87					
рН	SU	-	6.6	6.4	6.5	6.8					
Specific Conductance	uS/m	-	150	104		75					
Temperature	C	-	1.4	19		1.1					
Turbidity	NTU	-	6.3	3.7		2.4					
Flow	cfs	-									
Metals	0.0										
Aluminum	ug/L	-			114						
Antimony	ug/L	_			< 1.0 U						
Arsenic	ug/L	-	1.0	< 5.0 U	2.5	1.4					
Barium	ug/L	-			11						
Beryllium	ug/L	-			< 1.0 U						
Boron	ug/L	-			< 10.0 U						
Cadmium	ug/L	-									
Chromium	ug/L	-			< 1.0 U						
Cobalt	ug/L	-									
Copper	ug/L	-		0.95	0.89	0.82					
Iron	ug/L	-	1600	2340	3180	1900					
Lead	ug/L	-		0.26	6.0	0.26					
Lithium	ug/L	-			< 8.0 U						
Manganese	ug/L	-	167	266	242	119					
Mercury	ng/L	-	2.5	4.7	4.5	4.7 H					
Molybdenum	ug/L	-			< 1.0 U						
Nickel	ug/L	-		1.5	1.0	0.96					
Selenium	ug/L	-									
Silver	ug/L	-			< 0.20 U						
Thallium	ug/L				< 1.0 U						
Vanadium	ug/L ug/L	-			1.1						
Zinc	ug/L ug/L	-		4.9	3.8	2.3					
Major Anions	ug/L	-		4.5	5.0	2.3					
Alkalinity, Bicarbonate	mg/L		29	24	32	19					
Alkalinity, Carbonate	mg/L	-	< 2.0	< 2.0 U	< 0.50 U	< 1.00 U					
Chloride		-	10	< 2.0 0 7.2	< 0.30 0 4.2	< 1.00 0 5.5					
Fluoride	mg/L	-	< 0.10	< 0.10 U	4.2 < 0.10 U	< 0.10 U					
Nitrogen, Ammonia	mg/L	-	0.10	0.10 0	< 0.10 U	0.10 0					
	mg/L		0.13	< 0.10 U	< 0.025 U						
Nitrogen, Nitrate	mg/L	-		< 0.10 U	< 0.10 U	< 0.100 UH < 0.100 UH					
Nitrogen, Nitrite	mg/L		< 0.10 25			< 0.100 OH 8.3					
Sulfate Sulfide	mg/L	-	< 0.20	14 < 0.20 U	1.8 < 0.20 U	8.3 < 0.20 U					
Major Cations	mg/L	-	< 0.20	< 0.20 0	< 0.20 0	< 0.20 0					
			0.0	7.2	0.0	F 7					
Calcium Magnesium	mg/L	-	9.0 3.0	7.3 2.3	8.8 2.3	5.7 1.7					
-	mg/L										
Potassium	mg/L	-	1.2	0.82	0.59	0.65					
Sodium	mg/L	-	13	9.1	3.2	6.00					
General	ma = /1		25	20	22	24					
Hardness	mg/L	-	35	28	32	21					
Total Dissolved Solids	mg/L	-	101	73	64	55					
Total Suspended Solids	mg/L	-	< 2.5	8.1	5.9	14					

*Seasonal benchmarks are not calculated for this location due to insufficient data available.

Humboldt Mill 2022 Mine Permit Surface Water Quality Monitoring Data WBR-001 (Reference Mill Subwatershed)

			WBR-001 Seaso	nal Benchmarks		WBR-001 2022 Quarterly Data					
		Q1	Q2	Q3	Q4		WDR 001 2022				
Parameter	Unit	Winter Baseflow	Spring Snowmelt & Runoff	Summer Baseflow	Fall Rain	Q1 2022 ^D	Q2 2022 ^D	Q3 2022 ^D	Q4 2022 ^T		
Field	Onic		de Runon								
D.O.	ppm	-	-		-	NM	2.4		8.8		
ORP	mV	-	-	-	-	NM	113		170		
pH Hq	SU	4.97-5.97	4.7-5.7	5.7-6.7	4.6-5.6	NM	5.3	6.2	5.3		
Specific Conductance	uS/cm	-	-	-	-	NM	83		95		
Temperature	C	-	-	-	-	NM	16		1.1		
Turbidity	NTU	-	-	-	-	NM	6.6		10		
Flow	cfs	-	-	-	_	-	0.0				
Metals	615										
Aluminum	ug/L	-	-	200	-	NM		573			
Antimony	ug/L	-	-	3.5	-	NM		< 1.0 U			
Arsenic	ug/L	6.6	1.8	3.2	1.5	NM	< 5.0 U	7.9	1.1		
Barium	ug/L	-	-	17	-	NM		20			
Beryllium	ug/L	-	-	2.5	_	NM	1	< 1.0 U			
Boron	ug/L	-	-	40	-	NM	1	< 10.0 U			
Cadmium	ug/L	-	-	0.08	-	NM					
Chromium	ug/L	-	-	1.6	_	NM		1.6			
Cobalt	ug/L	-	-	0.4	_	NM					
Copper	ug/L	3.3	1.1	1.4	0.66	NM	2.4	1.7	0.57		
Iron	ug/L	11518	1759	4873	1900	NM	4560	7100	1950		
Lead	ug/L	4.3	1,35	2.3	1.3	NM	2.1	1.2	0.84		
Lithium	ug/L	-	-	32	-	NM	2.1	< 8.0 U			
Manganese	ug/L	363	106	770	122	NM	632	911	156		
Mercury	ng/L	15	11	16	11	NM	4.8	1.9	4.0 H		
Molybdenum	ug/L	-	-	4	-	NM	4.0	< 1.0 U			
Nickel	ug/L	3.1	0.97	3.0	0.98	NM	1.5	2.2	0.68		
Selenium	ug/L	-	-	0.28	-	NM	1.5				
Silver	ug/L			0.28	_	NM		< 0.20 U			
Thallium	ug/L	-	-	1.5	_	NM		< 0.20 0			
Vanadium	ug/L		-	1.5	_	NM		2.5			
Zinc	ug/L	16	12	1.7	8.2	NM	13	15	6.3		
Major Anions	ug/L	10	12	15	0.2		15	15	0.5		
Alkalinity, Bicarbonate	mg/L	9	5	16	6	NM	8.0	20	7.7		
Alkalinity, Carbonate	mg/L	8.0	8.0	8.0	8.0	NM	< 2.0 U	< 0.50 U	< 1.00 U		
Chloride	mg/L	24	25	28	23	NM	12	16	1.00 0		
Fluoride	mg/L	0.40	0.40	0.40	0.40	NM	< 0.10 U	< 0.10 U	< 0.10 U		
Nitrogen, Ammonia	mg/L	2.0	2.0	2.0	2.0	NM	0.100	0.10	0.100		
Nitrogen, Nitrate	mg/L	0.24	2.0	2.0	2.0	NM	< 0.10 U	< 0.19	< 0.100 UH		
Nitrogen, Nitrite	mg/L	2.0	2.0	2.0	2.0	NM	< 0.10 U	< 0.10 U	< 0.100 UH		
Sulfate	mg/L	11	4.0	4.0	4.0	NM	< 1.0 U	< 0.10 U	1.2		
Sulfide		20	20	20	20	NM	< 0.20 U	< 0.20 U	< 0.20 U		
Major Cations	mg/L	20	20	20	20		< 0.20 0	< 0.20 0	< 0.20 0		
Calcium	mg/L	7.6	4.8	7.9	5.6	NM	4.9	6.8	5.1		
Magnesium	mg/L	3.0	4.8	3.1	2.5	NM	4.9	2.5	2.0		
Potassium	-	2.7	0.94	3.1 1.6	1.6	NM	1.6	1.8	1.0		
Sodium	mg/L mg/L	11	12	1.6		NM	7.2	9.0	9.3		
General	iiig/ L	11	12	13	11		1.2	5.0	3.3		
	ma/1	27	21	20	20	NINA	10	27	31		
Hardness Total Dissolved Solids	mg/L	37 211	21 211	39 200	39 200	NM	19	27	21		
Total Suspended Solids	mg/L mg/L	55	13	13	13	NM NM	114 13	166 57	88 17		

Humboldt Mill 2022 Mine Permit Surface Water Quality Monitoring Data WBR-002 (Compliance - Mill Subwatershed)

			WBR-002 Seaso	nal Benchmarks			WBR-002 2022 Quarterly Data					
		Q1	Q2	Q3	Q4							
Parameter	Unit	Winter Baseflow	Spring Snowmelt & Runoff	Summer Baseflow	Fall Rain	Q1 2022 ^D	Q2 2022 ^D	Q3 2022 ^D	Q4 2022 ^D			
Field												
D.O.	ppm	-	-	-	-	8.7	8.5		12			
ORP	mV	-	-	-	-	45	60		46			
рН	SU	5.9-6.9	6.04-6.94	6.2-7.2	5.4-6.4	6.5	6.6	6.5	6.9			
Specific Conductance	uS/cm	-	-	-	-	313	127		166			
Temperature	С	-	-	-	-	1.0	19		3.1			
Turbidity	NTU	-	-	-	-	10	3.32		10			
Flow	cfs	-	-	-	-							
Metals												
Aluminum	ug/L	-	-	200	-			< 50.0 U				
Antimony	ug/L	-	-	3.5	-			< 1.0 U				
Arsenic	ug/L	7.1	3.0	7.2	4.6	8.5	< 5.0 U	6.3	2.9			
Barium	ug/L	-	-	16	-			8.3				
Beryllium	ug/L	-	-	2.5	-			< 1.0 U				
Boron	ug/L	-	-	18	-			16				
Cadmium	ug/L	-	-	0.08	-							
Chromium	ug/L	-	-	4.0	-			< 1.0 U				
Cobalt	ug/L	-	-	0.69	-							
Copper	ug/L	1.4	2.5	1.9	2.0		0.80	< 0.50 U	0.53			
Iron	ug/L	16421	4819	12928	9123	17400	2940	5600	3680			
Lead	ug/L	0.44	0.55	0.49	0.61		0.14	0.06	0.15			
Lithium	ug/L	-	-	32	-			< 8.0 U				
Manganese	ug/L	1550	262	709	458	1420	38	350	44			
Mercury	ng/L	4.5	3.6	3.0	4.7	2.0	2.2	1.2	1.3 H			
Molybdenum	ug/L	-	-	4.0	-			< 1.0 U				
Nickel	ug/L	3.3	2.5	2.6	3.2		1.2	1.1	0.98			
Selenium	ug/L	-	-	0.28	-							
Silver	ug/L	-	-	0.80	-			< 0.20 U				
Thallium	ug/L	-	-	1.5	-			< 1.0 U				
Vanadium	ug/L	-	-	4.0	-			< 1.0 U				
Zinc	ug/L	20	25	2.5	4.8		1.9	< 1.0 U	< 1.0 U			
Major Anions												
Alkalinity, Bicarbonate	mg/L	105	18	38	20	48	26	31	25			
Alkalinity, Carbonate	mg/L	8.0	8.0	8.0	8.0	< 2.0	< 2.0 U	< 0.50 U	< 1.00 U			
Chloride	mg/L	60	42	48	59	49	24	29	32			
Fluoride	mg/L	0.29	0.40	0.40	0.40	< 0.10	< 0.10 U	< 0.10 U	< 0.10 U			
Nitrogen, Ammonia	mg/L	2.0	2.0	2.0	2.0	0.30	< 0.025 U	< 0.025 U	0.06			
Nitrogen, Nitrate	mg/L	2.0	2.0	2.0	2.0	< 0.10	< 0.10 U	< 0.10 U	< 0.100 UH			
Nitrogen, Nitrite	mg/L	2.0	2.0	2.0	2.0	< 0.10	< 0.10 U	< 0.10 U	< 0.100 UH			
Sulfate	mg/L	10	9.1	4.0	4.0	1.3	2.0	< 1.0 U	1.4			
Sulfide	mg/L	20	20	20	20	< 0.20	< 0.20 U	< 0.20 U	< 0.20 U			
Major Cations												
Calcium	mg/L	13	7.0	9.7	9.8	12	5.3	7.4	6.9			
Magnesium	mg/L	5.9	3.5	4.5	5.1	5.5	2.3	3.3	3.2			
Potassium	mg/L	2.6	2.0	1.4	2.1	2.8	1.6	1.4	1.7			
Sodium	mg/L	28	22	25	27	27	13	18	18			
General												
Hardness	mg/L	57	33	46	44	52	23	32	31			
Total Dissolved Solids	mg/L	170	278	200	200	191	85	117	99			
Total Suspended Solids	mg/L	13	13	32	16	14	2.5	< 6.2 U	5.6			

Humboldt Mill 2022 Mine Permit Surface Water Quality Monitoring Data WBR-003 (Compliance - Mill Subwatershed)

			WBR-003 Seaso	nal Benchmarks		WBR-003 2022 Quarterly Data					
		Q1	Q2	Q3	Q4			Luarterry Data			
Parameter	Unit	Winter Baseflow	Spring Snowmelt & Runoff	Summer Baseflow	Fall Rain	Q1 2022 ^D	Q2 2022 ^D	Q3 2022 ^D	Q4 2022 ^D		
Field							2.0				
D.O.	ppm	-	-	-	-	5.5	3.0		8.9		
ORP	mV	-	-	-	-	172	75		154		
pH	SU	5.8-6.8	5.8-6.8	6.2-7.2	4.9-5.9	6.6	6.0	6.1	6.3		
Specific Conductance	uS/m	-	-	-	-	189	119		143		
Temperature	С	-	-	-	-	0.07	18		0.29		
Turbidity	NTU	-	-	-	-	6.1	8.6		5.8		
Flow	cfs	-	-		-						
Metals											
Aluminum	ug/L	-	-	200	-			157			
Antimony	ug/L	-	-	3.5	-			< 1.0 U			
Arsenic	ug/L	4.0	1.7	6.3	2.1	2.0	< 5.0 U	5.9	1.8		
Barium	ug/L	-	-	27	-			20			
Beryllium	ug/L	-	-	2.5	-			< 1.0 U			
Boron	ug/L	-	-	13	-			13			
Cadmium	ug/L	-	-	0.08	-						
Chromium	ug/L	-	-	4.0	-			< 1.0 U			
Cobalt	ug/L	-	-	2.6	-						
Copper	ug/L	0.67	0.74	0.20	1.1		0.60	0.71	0.81		
Iron	ug/L	12988	5033	19898	4248	4720	4060	15200	3070		
Lead	ug/L	0.40	0.26	0.29	0.28		0.21	0.32	0.38		
Lithium	ug/L	-	-	32	-			< 8.0 U			
Manganese	ug/L	2261	374	2794	235	611	252	1230	25		
Mercury	ng/L	6.1	3.4	5.7	6.9	1.5	2.5	1.3	2.6 H		
Molybdenum	ug/L	-	-	4.0	-			< 1.0 U			
Nickel	ug/L	3.5	1.8	2.4	1.7		1.5	1.5	0.97		
Selenium	ug/L	-	-	0.28	-						
Silver	ug/L	-	-	0.80	-			< 0.20 U			
Thallium	ug/L	-	-	1.5	-			< 1.0 U			
Vanadium	ug/L	-	-	4.0	-			< 1.0 U			
Zinc	ug/L	17	15	4.5	18		5.4	3.8	2.9		
Major Anions											
Alkalinity, Bicarbonate	mg/L	51	34	88	22	37	60	59	22		
Alkalinity, Carbonate	mg/L	8.0	8.0	8.0	8.0	< 2.0	< 2.0 U	< 0.50 U	< 1.00 U		
Chloride	mg/L	43	32	42	37	29	16	21	26		
Fluoride	mg/L	0.30	0.34	0.19	0.40	< 0.10	< 0.10 U	0.11	< 0.10 U		
Nitrogen, Ammonia	mg/L	2.0	2.0	2.0	2.0	0.14	< 0.025 U	0.06	< 0.025 U		
Nitrogen, Nitrate	mg/L	0.26	2.0	2.0	2.0	< 0.10	< 0.10 U	< 0.10 U	< 0.100 UH		
Nitrogen, Nitrite	mg/L	2.0	2.0	2.0	2.0	< 0.10	< 0.10 U	< 0.10 U	< 0.100 UH		
Sulfate	mg/L	17	20	4.0	4.0	1.6	1.0	< 1.0 U	1.6		
Sulfide	mg/L	20	20	20	20	< 0.20	< 0.20 U	< 0.20 U	< 0.20 U		
Major Cations											
Calcium	mg/L	15	11	24	8.4	9.1	8.1	14	6.1		
Magnesium	mg/L	6.1	4.5	9.6	3.9	4.3	3.2	4.9	2.9		
Potassium	mg/L	2.2	1.7	2.3	2.7	1.9	1.3	1.4	1.3		
Sodium	mg/L	20	15	22	20	16	9.5	14	14		
General											
Hardness	mg/L	64	43	109	36	41	34	54	27		
Total Dissolved Solids	mg/L	177	120	200	200	111	89	130	87		
Total Suspended Solids	mg/L	19	9.8	27	13	3.4	16	28	42		

 $\ensuremath{^*}$ - Lowest achievable Reporting Limit by laboratory due to matrix interference

Humboldt Mill 2022 Mine Permit Surface Water Quality Monitoring Data HMWQ-004 (Compliance - Mill Subwatershed)

			(p		VQ-004 2022 Quarterly Data					
				HIVIVVQ-004 202.	2 Quarterly Data					
		HMWQ-004	01 2022	02 2022	02 2022	04 2022				
		Seasonal	Q1 2022	Q2 2022	Q3 2022	Q4 2022				
Parameter	Unit	Benchmark*								
Field	-		NIN 4		N 18 4					
D.O.	ppm	-	NM	NM	NM	NM				
ORP	mV	-	NM	NM	NM	NM				
pH	SU	5.69-6.69	NM	NM	NM	NM				
Specific Conductance	uS/m	-	NM	NM	NM	NM				
Temperature	C	-	NM	NM	NM	NM				
Turbidity	NTU	-	NM	NM	NM	NM				
Flow	cfs	-	-	-	-	-				
Metals		200 ()	NIN 4		N 18 4					
Aluminum	ug/L	200 (p)	NM	NM	NM	NM				
Antimony	ug/L	2.3	NM	NM	NM	NM				
Arsenic	ug/L	35	NM	NM	NM	NM				
Barium	ug/L	118	NM	NM	NM	NM				
Beryllium	ug/L	4.0 (p)	NM	NM	NM	NM				
Boron	ug/L	36	NM	NM	NM	NM				
Cadmium	ug/L	0.10	NM	NM	NM	NM				
Chromium	ug/L	14	NM	NM	NM	NM				
Cobalt	ug/L	3.0	NM	NM	NM	NM				
Copper	ug/L	11	NM	NM	NM	NM				
Iron	ug/L	73409	NM	NM	NM	NM				
Lead	ug/L	2.1	NM	NM	NM	NM				
Lithium	ug/L	16	NM	NM	NM	NM				
Manganese	ug/L	2541	NM	NM	NM	NM				
Mercury	ng/L	43	NM	NM	NM	NM				
Molybdenum	ug/L	4.7	NM	NM	NM	NM				
Nickel	ug/L	5.6	NM	NM	NM	NM				
Selenium	ug/L	0.44	NM	NM	NM	NM				
Silver	ug/L	0.35	NM	NM	NM	NM				
Thallium	ug/L	4.0 (p)	NM	NM	NM	NM				
Vanadium ¬:	ug/L	39	NM	NM	NM	NM				
Zinc	ug/L	44	NM	NM	NM	NM				
Major Anions		<u> </u>			N 10 4					
Alkalinity, Bicarbonate	mg/L	68	NM	NM	NM	NM				
Alkalinity, Carbonate	mg/L	8.0 (p)	NM	NM	NM	NM				
Chloride	mg/L	68	NM	NM	NM	NM				
Fluoride	mg/L	0.23	NM	NM	NM	NM				
Nitrogen, Ammonia	mg/L	1.9	NM	NM	NM	NM				
Nitrogen, Nitrate	mg/L	2.0 (p)	NM	NM	NM	NM				
Nitrogen, Nitrite	mg/L	2.0 (p)	NM	NM	NM	NM				
Sulfate	mg/L	4.0 (p)	NM	NM	NM	NM				
Sulfide	mg/L	20 (p)	NM	NM	NM	NM				
Major Cations	m = //	21	NIN 4	NINA	NIN 4					
Calcium	mg/L	21	NM	NM	NM	NM				
Magnesium	mg/L	8.1	NM	NM	NM	NM				
Potassium	mg/L	3.3	NM	NM	NM	NM				
Sodium	mg/L	49	NM	NM	NM	NM				
General	m = /1		N10.4	NINA	NIR 4	NINA				
Hardness	mg/L	88	NM	NM	NM	NM				
Total Dissolved Solids	mg/L	209	NM	NM	NM	NM				
Total Suspended Solids	mg/L	353	NM	NM	NM	NM				

*Seasonal benchmarks are not calculated for this location due to insufficient data available.

Humbold Mill 2022 Mine Permit Surface Water Quality Monitoring Data HMP-009 (Compliance - HTDF Subwatershed - Wetland EE)

			HMP-009 2022 Quarterly Benchmark					
Parameter	Unit	HMP-009 Seasonal Benchmark*	Q1 2022	Q2 2022 ^D	Q3 2022 ^D	Q4 2022 ^D		
Field	onic	Denominaria						
D.O.	ppm	-	NM	6.4		NM		
ORP	mV	-	NM	-38		NM		
pH	SU	6.6-7.6	NM	6.4	6.2	NM		
Specific Conductance	uS/m	-	NM	160		NM		
Temperature	C	-	NM	24		NM		
Turbidity	NTU	-	NM	112		NM		
Flow	cfs	-	-			-		
Elevation	ft MSL	-	NM	1534.1	1534.37	NM		
Metals	TUVISE	-	INIVI	1554.1	1554.57			
		-	NM		1750	NM		
Aluminum	ug/L	-		-	3.4			
Antimony	· · · · · · · · · · · · · · · · · · ·		NM		3.4	NM		
Arsenic Parium	ug/L	6.0	NM NM	< 5.0 U	3.3 18	NM		
Barium	ug/L	-				NM		
Beryllium	ug/L	-	NM		< 1.0 U	NM		
Boron	ug/L	-	NM		20	NM		
Cadmium	ug/L	-	NM			NM		
Chromium	ug/L	-	NM		1.8	NM		
Cobalt	ug/L	-	NM			NM		
Copper	ug/L	1300	NM	9.1	9.2	NM		
Iron	ug/L	1759	NM	1340	3690	NM		
Lead	ug/L	6.4	NM	0.71	4.2	NM		
Lithium	ug/L	-	NM		< 8.0 U	NM		
Manganese	ug/L	856	NM	73	243	NM		
Mercury	ng/L	1.2	NM	7.0	8.6	NM		
Molybdenum	ug/L	-	NM		2.9	NM		
Nickel	ug/L	172	NM	14	15	NM		
Selenium	ug/L	-	NM			NM		
Silver	ug/L	-	NM		< 0.20 U	NM		
Thallium	ug/L	-	NM		< 1.0 U	NM		
Vanadium	ug/L	-	NM		2.7	NM		
Zinc	ug/L	64	NM	8.8	5.1	NM		
Major Anions								
Alkalinity, Bicarbonate	mg/L	101	NM	112 J	65	NM		
Alkalinity, Carbonate	mg/L	8	NM	< 2.0 U	< 0.50 U	NM		
Chloride	mg/L	37	NM	8.1	5.5	NM		
Fluoride	mg/L	2.7	NM	< 0.10 U	< 0.10 U	NM		
Nitrogen, Ammonia	mg/L	2.0	NM	< 0.025 U	0.05	NM		
Nitrogen, Nitrate	mg/L	0.16	NM	< 0.10 U	< 0.10 U	NM		
Nitrogen, Nitrite	mg/L	2.0	NM	< 0.10 U	< 0.10 U	NM		
Sulfate	mg/L	207	NM	8.1	5.4	NM		
Sulfide	mg/L	20	NM	< 0.20 U	< 0.20 U	NM		
Major Cations								
Calcium	mg/L	77	NM	17	16	NM		
Magnesium	mg/L	66	NM	4.8	5.0	NM		
Potassium	mg/L	87	NM	2.2	1.7	NM		
Sodium	mg/L	37	NM	5.4	4.3	NM		
General					-			
Hardness	mg/L	342	NM	61	61	NM		
Total Dissolved Solids	mg/L	529	NM	92	84	NM		
	mg/L	13	NM	19	135	NM		

* - Recommended Benchmarks are for Q2 - Insufficient Q4 Data to Develop Benchmarks

Humboldt Mill 2022 Mine Permit Surface Water Quality Monitoring Data Abbreviations and Data Qualifiers

Notes:

Benchmarks are calculated based on guidance from Eagles Mine's Development of Site Specific Benchmarks for Mine Permit Water Quality Monitoring.

Results in **bold** text indicate that the parameter was detected at a level greater than the laboratory reporting limit.

Highlighted Cell = Value is equal to or above site-specific benchmark. An exceedance occurs if there are 2 consecutive sampling events with a value equal to or greater than the benchmark at a compliance monitoring location.

(p) = Due to less than two detections in baseline dataset, benchmark defaulted to four times the reporting limit.

--Denotes no benchmark required or parameter was not required to be collected during the sampling quarter.

e = estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

NM = Not measured.

T = Samples not filtered and all values are total concentrations.

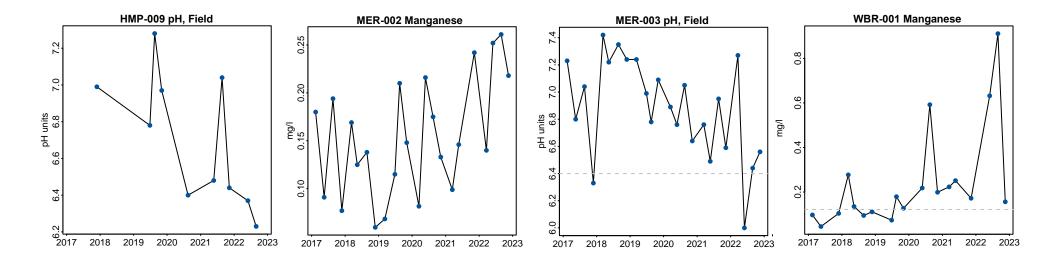
D = Sample for metal and major cation parameters was filtered and values are dissolved concentrations.

Appendix J

Humboldt Mill

Surface Water Trend Analysis Summary

2022 Surface Water Trend Analysis Humboldt Mill


			Non-	Percent					Standard	Coeff. of	M-K Test	Approx.	Trend at	Theil-Sen
Location	Parameter	Samples	Detects	Detected	Minimum	Maximum	Mean	Median	Deviation	Variation	Value (S)	p-value	95% Conf.	Slope, conc/yr
HMP-009	Bicarbonate alkalinity	. 9	0	100%	21.3	112	55.4	58.9	26.8	0.48	18	0.0763	no trend	6.91
HMP-009	Calcium	9	0	100%	6.7	44.9	19.7	16.6	12.10	0.61	-4	0.7545	no trend	-0.98
HMP-009	Field pH	10	0	100%	6.23	7.28	6.70	6.63	0.36	0.05	-25	0.0318	NEGATIVE	-0.15
HMP-009	Hardness	9	0	100%	17.3	138	58.7	61.1	35.6	0.61	-2	0.9161	no trend	-1.58
HMP-009	Iron	9	0	100%	0.0109	163	19.6	1.34	53.8	2.74	4	0.7545	no trend	0.09
HMP-009	Magnesium	9	0	100%	2.2	14.9	6.66	5	4.75	0.71	0	1.0000	no trend	-0.01
HMP-009	Manganese	9	0	100%	0.0149	0.243	0.096	0.073	0.082	0.86	6	0.6022	no trend	0.01
HMP-009	Sodium	9	0	100%	4.1	39.7	10.5	5.4	11.5	1.09	-8	0.4655	no trend	-1.80
HMP-009	Sulfate	9	0	100%	0.117	178	24.8	6.2	57.5	2.32	-10	0.3481	no trend	-1.09
MER-001	Bicarbonate alkalinity	23	0	100%	8.8	45.5	23.1	21	9.3	0.40	24	0.5430	no trend	0.64
MER-001	Calcium	23	0	100%	4	15.1	7.70	6.9	2.91	0.38	10	0.8119	no trend	0.10
MER-001	Field pH	24	0	100%	5.96	7.64	6.75	6.71	0.46	0.07	-29	0.4872	no trend	-0.04
MER-001	Hardness	21	0	100%	14.4	55	30.7	28	11.8	0.39	-37	0.2768	no trend	-1.65
MER-001	Iron	23	0	100%	0.813	3.3	1.47	1.29	0.63	0.43	16	0.6919	no trend	0.03
MER-001	Magnesium	23	0	100%	1.1	4.2	2.16	2	0.76	0.35	-3	0.9576	no trend	0
MER-001	Manganese	23	0	100%	0.0281	1.9	0.184	0.095	0.378	2.05	15	0.7116	no trend	0.00
MER-001	Sodium	23	0	100%	1.7	7.6	3.3	3.2	1.4	0.42	-34	0.3822	no trend	-0.14
MER-001	Sulfate	23	7	70%	1	5.4	2.53	2.4	1.3	0.50	58	0.1306	no trend	0.22
MER-002	Bicarbonate alkalinity	23	0	100%	10	51.4	25.7	24	10.4	0.40	19	0.6345	no trend	0.59
MER-002	Calcium	23	0	100%	4.3	17.7	8.82	8	3.41	0.39	2	0.9789	no trend	0
MER-002	Field pH	24	0	100%	6	7.49	6.78	6.69	0.39	0.06	-47	0.2537	no trend	-0.07
MER-002	Hardness	21	0	100%	15.7	64.4	33.4	29.5	12.9	0.39	-10	0.7858	no trend	-0.54
MER-002	Iron	23	0	100%	0.998	3.42	1.97	2.01	0.79	0.40	50	0.1955	no trend	0.14
MER-002	Magnesium	23	0	100%	1.2	4.9	2.52	2.3	0.91	0.36	-12	0.7703	no trend	-0.02
MER-002	Manganese	23	0	100%	0.0596	0.261	0.154	0.146		0.39	81	0.0346	POSITIVE	0.02
MER-002	Sodium	23	0	100%	2.4	9.6	4.5	4.2		0.38	-40	0.3020	no trend	-0.15
MER-002	Sulfate	23	3	87%	1	13.1	4.91	4.9	3.0	0.60	-49	0.2046	no trend	-0.48
MER-003	Bicarbonate alkalinity	23	0	100%	10.7	105	30.9	25	19.4	0.63	12	0.7713	no trend	0.32
MER-003	Calcium	23	0	100%	4.4	16.7	9.28	8.8	3.48	0.38	11	0.7916	no trend	0.14
MER-003	Field pH	24	0	100%	6	7.42	6.88	6.92	0.36	0.05	-114	0.0050	NEGATIVE	-0.13
MER-003	Hardness	21	0	100%	12	62.7	35.6	34.9	15.3	0.43	5	0.9038	no trend	0.26
MER-003	Iron	23	0	100%	1.02	3.05	1.83	1.75	0.65	0.36	-5	0.9159	no trend	-0.01
MER-003	Magnesium	23	0	100%	1.3	5.6	2.89	2.6	1.12	0.39	9	0.8319	no trend	0
MER-003	Manganese	23	0	100%	0.0509	0.263	0.155	0.150	0.060	0.39	43	0.2673	no trend	0.01
MER-003	Sodium	23	0	100%	3.4	45.1	10.4	7.3	8.7	0.84	74	0.0538	no trend	1.07
MER-003	Sulfate	23	1	96%	1	84.2	15.7	9.9	17.2	1.10	54	0.1614	no trend	1.79
MER-004	Bicarbonate alkalinity	11	0	100%	10.4	46.4	28.7	29.2	9.9	0.35	-1	1.0000	no trend	-0.37
MER-004	Calcium	11	0	100%	4.5	15.7	9.76	9.4	3.47	0.36	-21	0.1195	no trend	-1.26

2022 Surface Water Trend Analysis Humboldt Mill

			Non-	Percent		_			Standard	Coeff. of	M-K Test		Trend at	Theil-Sen
Location	Parameter	Samples	Detects	Detected	Minimum	Maximum	Mean	Median	Deviation	Variation	Value (S)	p-value	95% Conf.	Slope, conc/yr
MER-004	Field pH	12	0	100%	6	7.37	6.63	6.55		0.06	2	0.9453	no trend	0.02
MER-004	Hardness	11	0	100%	16.9	61.1	37.1	36.2		0.37	-21	0.1195	no trend	-5.13
MER-004	Iron	11	0	100%	1.12	3.18	2.05	1.9		0.32	9	0.5334	no trend	0.19
MER-004	Magnesium	11	0	100%	1.4	5.6	3.09	3		0.40	-21	0.1172	no trend	-0.59
MER-004	Manganese	11	0	100%	0.103	0.276	0.191	0.175	0.062	0.33		1.0000	no trend	0.00
MER-004	Sodium	11	0	100%	3.2	45.1	13.0	9.2	11.8	0.91	-13	0.3502	no trend	-1.74
MER-004	Sulfate	11	0	100%	1.8	83.4	21.9	15.7	22.8	1.04	-15	0.2758	no trend	-6.15
WBR-001	Bicarbonate alkalinity	19	1	95%	2	25.6	7.27	5.5	5.9	0.82		0.2205	no trend	0.41
WBR-001	Calcium	19	0	100%	2.4	6.8	4.27	4.3	1.11	0.26	55	0.0586	no trend	0.27
WBR-001	Field pH	20	0	100%	5.05	7.36	5.82	5.66	0.62	0.11	35	0.2692	no trend	0.05
WBR-001	Hardness	17	0	100%	0.99	60	20.7	18	13.0	0.63	25	0.3224	no trend	0.58
WBR-001	Iron	19	0	100%	1	7.1	2.27	1.95	1.48	0.65	51	0.0802	no trend	0.21
WBR-001	Magnesium	19	1	95%	1	2.5	1.65	1.6	0.39	0.24	42	0.1457	no trend	0.07
WBR-001	Manganese	19	0	100%	0.045	0.911	0.242	0.172	0.225	0.93	85	0.0033	POSITIVE	0.04
WBR-001	Sodium	19	0	100%	4.1	13.3	8.1	7.8	2.5	0.31	33	0.2623	no trend	0.40
WBR-001	Sulfate	19	14	26%	1	120								
WBR-002	Bicarbonate alkalinity	23	0	100%	11.8	98	29.3	27.8	17.3	0.59	12	0.7713	no trend	0.62
WBR-002	Calcium	23	0	100%	4.7	11.6	7.83	7.5	1.99	0.25	-14	0.7309	no trend	-0.04
WBR-002	Field pH	24	0	100%	5.8	7.4	6.36	6.36	0.38	0.06	20	0.6372	no trend	0.02
WBR-002	Hardness	23	0	100%	21.6	51.7	34.2	32.5	8.2	0.24	-11	0.7917	no trend	-0.48
WBR-002	Iron	23	0	100%	2.3	21.8	7.86	6.93	4.91	0.62	-13	0.7513	no trend	-0.31
WBR-002	Magnesium	23	0	100%	2.2	5.5	3.63	3.7	0.92	0.25	-33	0.3970	no trend	-0.14
WBR-002	Manganese	23	0	100%	0.0384	1.42	0.480	0.337	0.407	0.85	-23	0.5612	no trend	-0.02
WBR-002	Sodium	23	0	100%	13.4	26.9	18.9	18.2	3.4	0.18	-17	0.6724	no trend	-0.30
WBR-002	Sulfate	23	11	52%	0.86	10	2.22	1.7	2.05	0.92	-19	0.6260	no trend	0
WBR-003	Bicarbonate alkalinity	22	0	100%	11.8	90.7	35.9	31.9	18.2	0.51	54	0.1349	no trend	3.10
WBR-003	Calcium	22	0	100%	4.9	25.3	9.73	9	4.41	0.45	24	0.5161	no trend	0.22
WBR-003	Field pH	23	0	100%	5.8	7.53	6.31	6.26	0.40	0.06	-36	0.3551	no trend	-0.04
WBR-003	Hardness	22	0	100%	21.6	97.7	40.9	39.5	16.8	0.41	22	0.5536	no trend	0.78
WBR-003	Iron	22	0	100%	2.57	35.4	8.65	5.28	7.83	0.90	-17	0.6519	no trend	-0.23
WBR-003	Magnesium	22	0	100%	2.3	8.4	4.11	4.05	1.35	0.33	7	0.8654	no trend	0.04
WBR-003	Manganese	22	0	100%	0.0253	1.55	0.536	0.406	0.445	0.83	-15	0.6930	no trend	-0.01
WBR-003	Sodium	22	0	100%	8	20	14.0	14.7	3.2	0.23	-64	0.0755	no trend	-0.60
WBR-003	Sulfate	22	13	41%	0.86	10	2.11	1	2.09	0.99	17	0.6282	no trend	0

-- Insufficient number or fraction of detected values for calculation

Bold: Exceeded benchmark for two or more consecutive seasonal quarterly benchmarks between Q1 2021 and Q4 2022

Detect
 Non–Detect
 2018 Benchmark

Appendix K

Humboldt Mill

Sediment Monitoring Results

2022 Sediment Monitoring Data MER-001 (Reference) Humboldt Mill

		Threshold						
		Effects	Probable Effects	Q4 2020	Q3 2022			
Parameter	Unit	Concentration	Concentration	12/29/2020	8/29/2022			
Metals								
Aluminum	mg/kg	-	-	6470	7050			
Antimony	mg/kg	-	-	<0.026	0.1			
Arsenic	mg/kg	9.79	33	12	7.8			
Barium	mg/kg	-	-	18	12.5			
Beryllium	mg/kg	-	-	0.18 J	<0.55			
Boron	mg/kg	-	-	0.72 J	<5.5			
Cadmium	mg/kg	0.99	4.98	<0.054	0.063			
Chromium	mg/kg	43.4	111	32	29.6			
Cobalt	mg/kg	-	-	4.5	4.3			
Copper	mg/kg	31.6	149	7.2	29.2			
Iron	mg/kg	-	-	17900	20900			
Lead	mg/kg	35.8	128	1.9	11.1			
Lithium	mg/kg	-	-	14	9.9			
Manganese	mg/kg	-	-	258	124			
Mercury	mg/kg	0.18	1.06	<0.059	<0.22			
Molybdenum	mg/kg	-	-	0.13 J	<1.1			
Nickel	mg/kg	22.7	48.6	19	24.2			
Selenium	mg/kg	-	-	0.32	0.57			
Silver	mg/kg	-	-	0.014 J	<0.049			
Thallium	mg/kg	-	-	0.022 J	<0.097			
Vanadium	mg/kg	-	-	24	28.6			
Zinc	mg/kg	121	459	34	31.7			
Major Anions								
Sulfide	mg/kg	-	-	40	<4.9			
Major Cations								
Magnesium	mg/kg	-	-	3530	3460			

2022 Sediment Monitoring Data MER-002 (Compliance) Humboldt Mill

		Threshold						
		Effects	Probable Effects	Q4 2020	Q3 2022			
Parameter	Unit	Concentration	Concentration	12/29/2020	8/29/2022			
Metals								
Aluminum	mg/kg	-	-	7090	4860			
Antimony	mg/kg	-	-	0.071 J	<0.11			
Arsenic	mg/kg	9.79	33	6.4	11.2			
Barium	mg/kg	-	-	11	10.7			
Beryllium	mg/kg	-	-	0.14 J	<0.50			
Boron	mg/kg	-	-	1.1 J	<5.0			
Cadmium	mg/kg	0.99	4.98	<0.054	<0.056			
Chromium	mg/kg	43.4	111.0	18	13.3			
Cobalt	mg/kg	-	-	4.5	3.4			
Copper	mg/kg	31.6	149	27	3.3			
Iron	mg/kg	-	-	16100	12400			
Lead	mg/kg	35.8	128	2.9	<1.0			
Lithium	mg/kg	-	-	11	7.4			
Manganese	mg/kg	-	-	98	115			
Mercury	mg/kg	0.18	1.06	<0.060	<0.25			
Molybdenum	mg/kg	-	-	0.47 J	<1.0			
Nickel	mg/kg	22.7	48.6	18	11			
Selenium	mg/kg	-	-	0.61	0.98			
Silver	mg/kg	-	-	0.045 J	<0.056			
Thallium	mg/kg	-	-	0.033 J	<0.11			
Vanadium	mg/kg	-	-	20	13.2			
Zinc	mg/kg	121.0	459.0	29	26.6			
Major Anions	Major Anions							
Sulfide	mg/kg	-	-	<19	<4.9			
Major Cations								
Magnesium	mg/kg	-	-	3730	2670			

2022 Sediment Monitoring Data MER-003 (Compliance) Humboldt Mill

		Threshold							
		Effects	Probable Effects	Q4 2020	Q3 2022				
Parameter	Unit	Concentration	Concentration	12/29/2020	8/29/2022				
Metals	Metals								
Aluminum	mg/kg	-	-	10400	4570				
Antimony	mg/kg	-	-	0.056 J	0.13				
Arsenic	mg/kg	9.79	33	3.2	6.9				
Barium	mg/kg	-	-	9.2	12.9				
Beryllium	mg/kg	-	-	0.20 J	<0.59				
Boron	mg/kg	-	-	1.4 J	<5.9				
Cadmium	mg/kg	0.99	4.98	0.059	0.069				
Chromium	mg/kg	43.4	111.0	24	10.9				
Cobalt	mg/kg	-	-	8.9	4.6				
Copper	mg/kg	31.6	149	57	39.9				
Iron	mg/kg	-	-	22200	14200				
Lead	mg/kg	35.8	128	2.9	2				
Lithium	mg/kg	-	-	4.7 J	<5.9				
Manganese	mg/kg	-	-	424	234				
Mercury	mg/kg	0.18	1.06	<0.057	<0.23				
Molybdenum	mg/kg	-	-	<0.046	<1.2				
Nickel	mg/kg	22.7	48.6	23	13				
Selenium	mg/kg	-	-	0.39 J	<0.54				
Silver	mg/kg	-	-	0.11	<0.054				
Thallium	mg/kg	-	-	0.021 J	<0.11				
Vanadium	mg/kg	-	-	32	29				
Zinc	mg/kg	121	459	25	22				
Major Anions	Major Anions								
Sulfide	mg/kg	-	-	<18	<4.9				
Major Cations									
Magnesium	mg/kg	-	-	8460	3150				

2022 Sediment Monitoring Data MER-004 (Monitoring) Humboldt Mill

		Threshold						
		Effects	Probable Effects	Q4 2020	Q3 2022			
Parameter	Unit	Concentration	Concentration	12/29/2020	8/29/2022			
Metals								
Aluminum	mg/kg	-	-	4430	2910			
Antimony	mg/kg	-	-	0.034 J	<0.13			
Arsenic	mg/kg	9.79	33	8.3	8.5			
Barium	mg/kg	-	-	13	20			
Beryllium	mg/kg	-	-	0.13 J	<0.61			
Boron	mg/kg	-	-	0.72 J	<6.1			
Cadmium	mg/kg	0.99	4.98	<0.058	0.2			
Chromium	mg/kg	43.4	111.0	12	7			
Cobalt	mg/kg	-	-	3.4	2.8			
Copper	mg/kg	31.6	149	3.8	5.3			
Iron	mg/kg	-	-	14000	20100			
Lead	mg/kg	35.8	128	1.8	13			
Lithium	mg/kg	-	-	5.6 J	<6.1			
Manganese	mg/kg	-	-	202	504			
Mercury	mg/kg	0.18	1.06	<0.063	<0.27			
Molybdenum	mg/kg	-	-	0.26 J	<1.2			
Nickel	mg/kg	22.7	48.6	9.0	7.1			
Selenium	mg/kg	-	-	0.37 J	0.73			
Silver	mg/kg	-	-	0.0074 J	<0.064			
Thallium	mg/kg	-	-	0.016 J	<0.13			
Vanadium	mg/kg	-	-	16	16			
Zinc	mg/kg	121	459	27	28			
Major Anions								
Sulfide	mg/kg	-	-	<20.3	<4.9			
Major Cations								
Magnesium	mg/kg	-	-	2370	1460			

2022 Sediment Monitoring Data WBR-001 (Reference) Humboldt Mill

		Threshold					
		Effects	Probable Effects	Q4 2020	Q3 2022		
Parameter	Unit	Concentration	Concentration	12/29/2020	8/29/2022		
Metals							
Aluminum	mg/kg	-	-	4160	5230		
Antimony	mg/kg	-	-	0.057 J	<0.20		
Arsenic	mg/kg	9.79	33	6.7	74.3		
Barium	mg/kg	-	-	24	24.1		
Beryllium	mg/kg	-	-	0.12 J	<1.1		
Boron	mg/kg	-	-	2.0 J	<10.7		
Cadmium	mg/kg	0.99	4.98	0.20	0.11		
Chromium	mg/kg	43.4	111	10	9.6		
Cobalt	mg/kg	-	-	2.0	2.5		
Copper	mg/kg	31.6	149	6.8	8.8		
Iron	mg/kg	-	-	9170	13400		
Lead	mg/kg	35.8	128	16	7.4		
Lithium	mg/kg	-	-	3.5 J	<10.7		
Manganese	mg/kg	-	-	86	191		
Mercury	mg/kg	0.18	1.06	<0.10	<0.44		
Molybdenum	mg/kg	-	-	0.58 J	<2.1		
Nickel	mg/kg	22.7	48.6	7.2	8.9		
Selenium	mg/kg	-	-	0.77	<1.0		
Silver	mg/kg	-	-	0.027 J	<0.10		
Thallium	mg/kg	-	-	0.065 J	<0.20		
Vanadium	mg/kg	-	-	16	18		
Zinc	mg/kg	121	459	18	21		
Major Anions	Major Anions						
Sulfide	mg/kg	-	-	<31.6	<4.9		
Major Cations							
Magnesium	mg/kg	-	-	1500	1610		

2022 Sediment Monitoring Data WBR-002 (Compliance) Humboldt Mill

		Threshold						
		Effects	Probable Effects	Q4 2020	Q3 2022			
Parameter	Unit	Concentration	Concentration	12/29/2020	8/29/2022			
Metals								
Aluminum	mg/kg	-	-	7900	4350			
Antimony	mg/kg	-	-	0.046 J	<0.11			
Arsenic	mg/kg	9.79	33	7.1	4.9			
Barium	mg/kg	-	-	24	14.6			
Beryllium	mg/kg	-	-	0.37 J	<0.59			
Boron	mg/kg	-	-	1.2 J	<5.9			
Cadmium	mg/kg	0.99	4.98	<0.053	<0.055			
Chromium	mg/kg	43.4	111.0	13	8.2			
Cobalt	mg/kg	-	-	4.0	2.8			
Copper	mg/kg	31.6	149	26	5.5			
Iron	mg/kg	-	-	27900	15500			
Lead	mg/kg	35.8	128	17	1.3			
Lithium	mg/kg	-	-	9.0	7			
Manganese	mg/kg	-	-	147	103			
Mercury	mg/kg	0.18	1.06	<0.057	<0.26			
Molybdenum	mg/kg	-	-	8.7	<1.2			
Nickel	mg/kg	22.7	48.6	12	8.7			
Selenium	mg/kg	-	-	0.38 J	<0.55			
Silver	mg/kg	-	-	0.009 J	<0.055			
Thallium	mg/kg	-	-	0.032 J	<0.11			
Vanadium	mg/kg	-	-	51	16.9			
Zinc	mg/kg	121	459	16	14.7			
Major Anions								
Sulfide	mg/kg	-	-	<18	<4.9			
Major Cations								
Magnesium	mg/kg	-	-	3400	2030			

2022 Sediment Monitoring Data WBR-003 (Compliance) Humboldt Mill

		Threshold						
		Effects	Probable Effects	Q4 2020	Q3 2022			
Parameter	Unit	Concentration	Concentration	12/29/2020	8/29/2022			
Metals								
Aluminum	mg/kg	-	-	7710	4370			
Antimony	mg/kg	-	-	0.035 J	0.12			
Arsenic	mg/kg	9.79	33	5.6	5.4			
Barium	mg/kg	-	-	20	16.7			
Beryllium	mg/kg	-	-	0.23 J	<0.52			
Boron	mg/kg	-	-	2.1 J	<5.2			
Cadmium	mg/kg	0.99	4.98	<0.053	<0.051			
Chromium	mg/kg	43.4	111.0	17	8.3			
Cobalt	mg/kg	-	-	4.4	2.8			
Copper	mg/kg	31.6	149	23	17.3			
Iron	mg/kg	-	-	22500	29500			
Lead	mg/kg	35.8	128	2.3	1.8			
Lithium	mg/kg	-	-	11	<5.2			
Manganese	mg/kg	-	-	191	116			
Mercury	mg/kg	0.18	1.06	<0.056	<0.24			
Molybdenum	mg/kg	-	-	1.6	<1.0			
Nickel	mg/kg	22.7	48.6	18	11.7			
Selenium	mg/kg	-	-	0.98 J	0.56			
Silver	mg/kg	-	-	0.025 J	<0.051			
Thallium	mg/kg	-	-	0.11	<0.10			
Vanadium	mg/kg	-	-	41	28			
Zinc	mg/kg	121	459	49	52.5			
Major Anions								
Sulfide	mg/kg	-	-	<19	<4.8			
Major Cations								
Magnesium	mg/kg	-	-	20400	1910			

2022 Sediment Monitoring Data HMWQ-004 (Compliance) Humboldt Mill

		Threshold	Probable	Q4 2020	
		Effects	Effects	12/29/2020	Q3 2022
Parameter	Unit	Concentration	Concentration	9/4/2018	8/29/2022
Metals					
Aluminum	mg/kg	-	-	NM	NM
Antimony	mg/kg	-	-	NM	NM
Arsenic	mg/kg	9.79	33	NM	NM
Barium	mg/kg	-	-	NM	NM
Beryllium	mg/kg	-	-	NM	NM
Boron	mg/kg	-	-	NM	NM
Cadmium	mg/kg	0.99	4.98	NM	NM
Chromium	mg/kg	43.4	111	NM	NM
Cobalt	mg/kg	-	-	NM	NM
Copper	mg/kg	31.6	149	NM	NM
Iron	mg/kg	-	-	NM	NM
Lead	mg/kg	35.8	128	NM	NM
Lithium	mg/kg	-	-	NM	NM
Manganese	mg/kg	-	-	NM	NM
Mercury	mg/kg	0.18	1.06	NM	NM
Molybdenum	mg/kg	-	-	NM	NM
Nickel	mg/kg	22.7	48.6	NM	NM
Selenium	mg/kg	-	-	NM	NM
Silver	mg/kg	-	-	NM	NM
Thallium	mg/kg	-	-	NM	NM
Vanadium	mg/kg	-	-	NM	NM
Zinc	mg/kg	121	459	NM	NM
Major Anions					
Sulfide	mg/kg	-	-	NM	NM
Major Cations					
Magnesium	mg/kg	-	-	NM	NM

2022 Sediment Monitoring Data HMP-009 (Compliance) Humboldt Mill

		Threshold						
		Effects	Probable Effects	Q4 2020	Q3 2022			
Parameter	Unit	Concentration	Concentration	12/29/2020	8/29/2022			
Metals								
Aluminum	mg/kg	-	-	9100	9830			
Antimony	mg/kg	-	-	0.29	0.84			
Arsenic	mg/kg	9.8	33.0	7.9	4.8			
Barium	mg/kg	-	-	39	41.1			
Beryllium	mg/kg	-	-	0.71 J	<0.94			
Boron	mg/kg	-	-	7.2 J	<9.4			
Cadmium	mg/kg	0.99	4.98	<0.12	<0.079			
Chromium	mg/kg	43.4	111	18	17.6			
Cobalt	mg/kg	-	-	5.6	8			
Copper	mg/kg	31.6	149	29	51.6			
Iron	mg/kg	-	-	17200	15700			
Lead	mg/kg	35.8	128	14	10.6			
Lithium	mg/kg	-	-	6.4 J	<9.4			
Manganese	mg/kg	-	-	241	255			
Mercury	mg/kg	0.18	1.06	<0.13	<0.39			
Molybdenum	mg/kg	-	-	1.5 J	2.6			
Nickel	mg/kg	22.7	48.6	22	52			
Selenium	mg/kg	-	-	1.8 J	<1.6			
Silver	mg/kg	-	-	0.089 J	0.14			
Thallium	mg/kg	-	-	0.12 J	<0.16			
Vanadium	mg/kg	-	-	19	24.6			
Zinc	mg/kg	121	459	38	34.4			
Major Anions								
Sulfide	mg/kg	-	-	<39	<5.0			
Major Cations								
Magnesium	mg/kg	-	-	6830	7950			

Sediment Monitoring Data Abbreviations Data Qualifiers Humboldt Mill

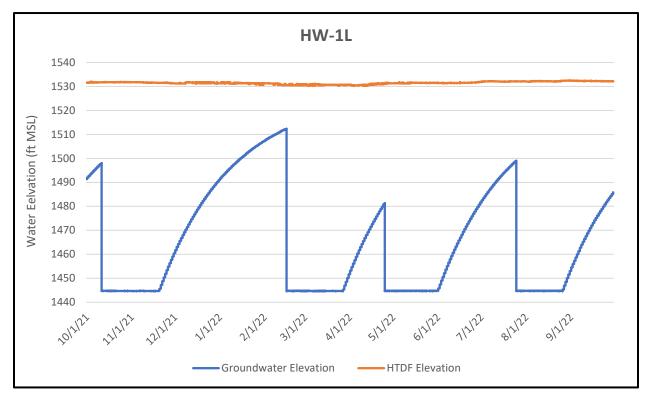
Notes:

Threshold Effects Concentration (TEC) and Probable Effects Concentration (PEC) are consensus based guidelines developed by D.D. MacDonald, C.G. Inersol, T.A. Berger and published in the Archives of Environmental Contamination and Toxicology, "Development and Evaluation of Consensus Based Sediment Quality Guidelines for Freshwater Ecosystems, " January 2000.

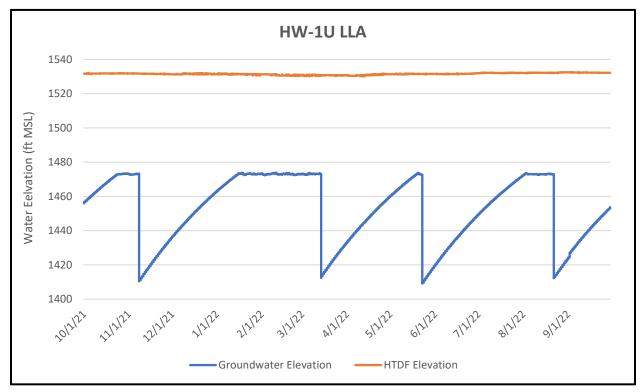
Results in **bold** text indicate that the parameter was detected at a level greater than the laboratory reporting limit.

Highlighted Cell = Value is equal to or greater than the TEC or PEC established for the parameter.

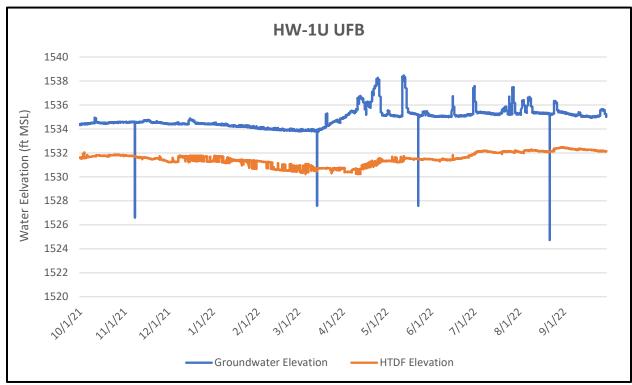
--Denotes no TEC or PEC is established for the parameter

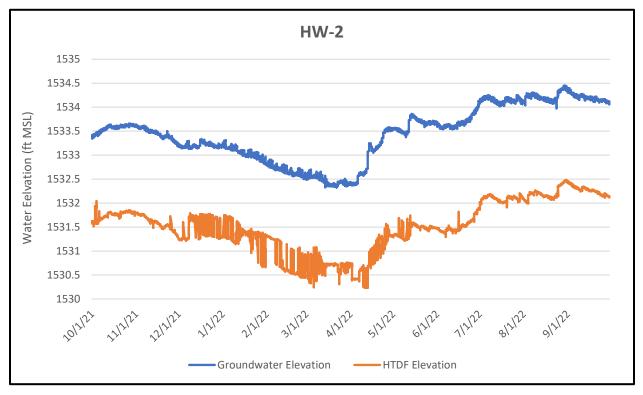

NM = Not measured during the sampling event

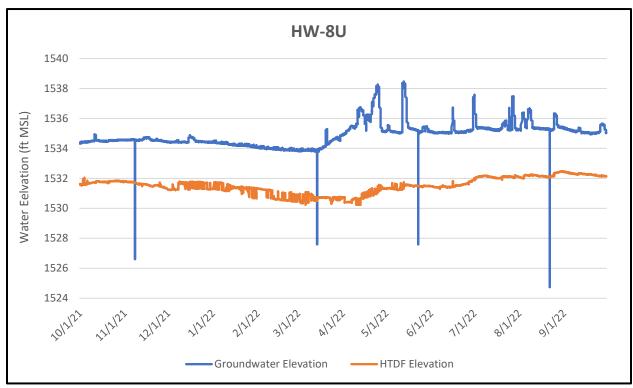
* MER-004 was added as a monitoring location in 2020 and therefore no sediment data is available from prior sampling events.

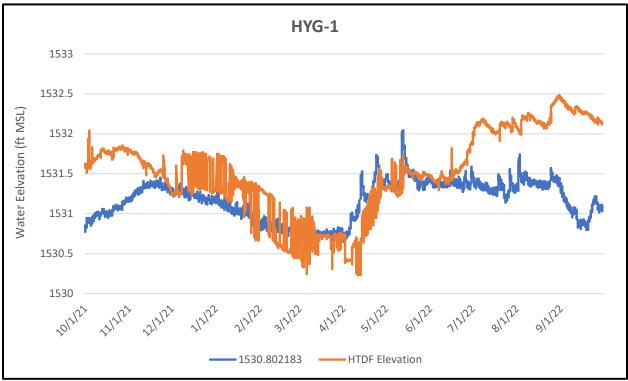

Appendix L

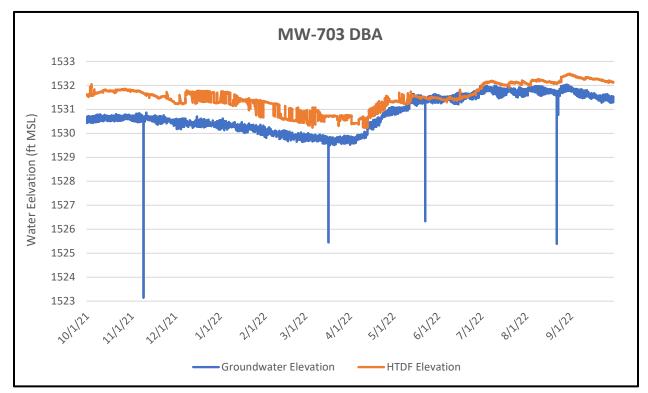
Humboldt Mill

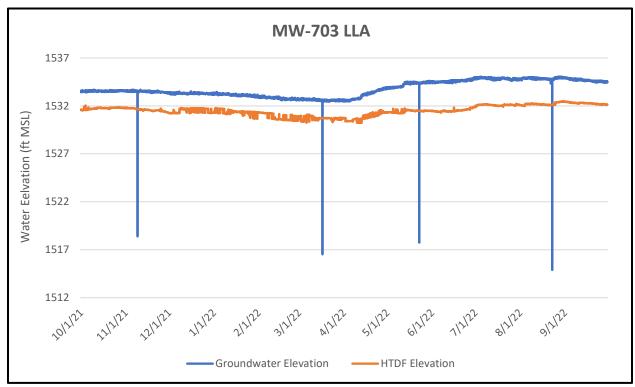

Groundwater Hydrographs

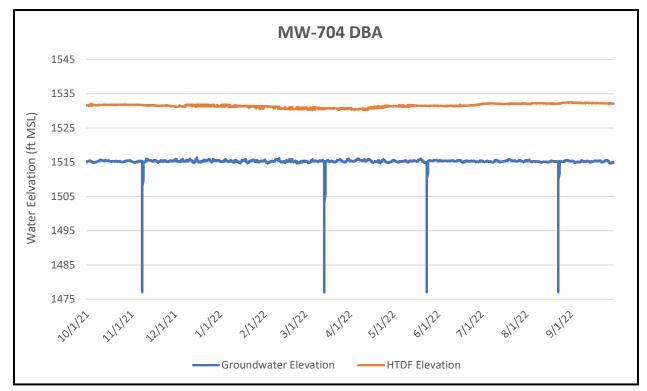

Note: The large drops in water level are associated with the location being pumped down in preparation of sampling.

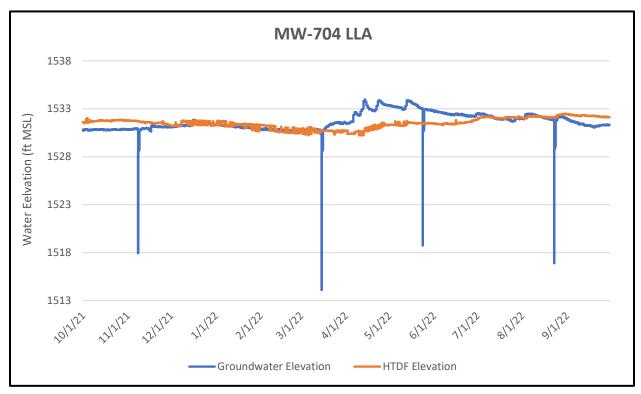

Note: The large drops in water level are associated with the location being pumped down in preparation of sampling.

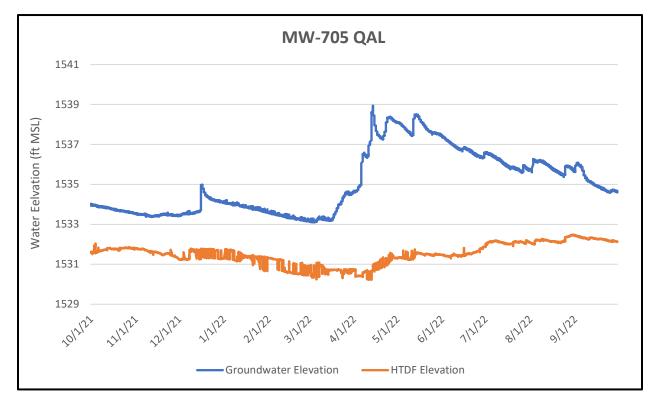

Note: The large drops in water level are associated with the location being pumped down in preparation of sampling.

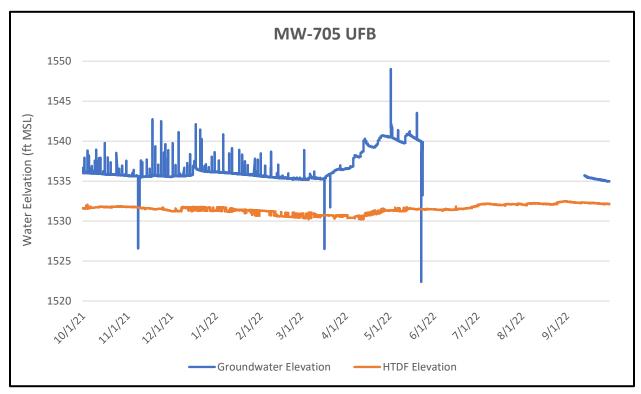

Note: The large drops in water level are associated with the location being pumped down in preparation of sampling.

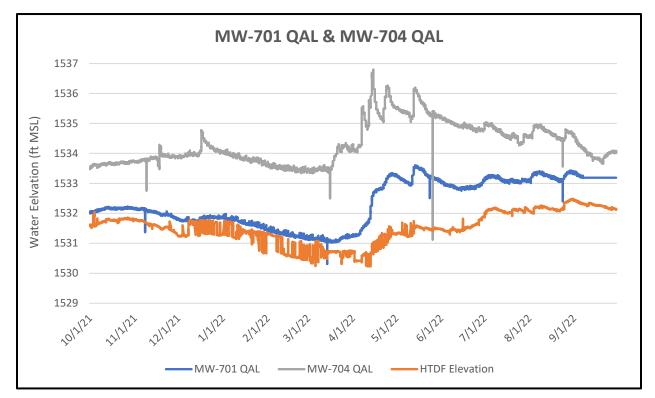

Note: The large drops in water level are associated with the location being pumped down in preparation of sampling.

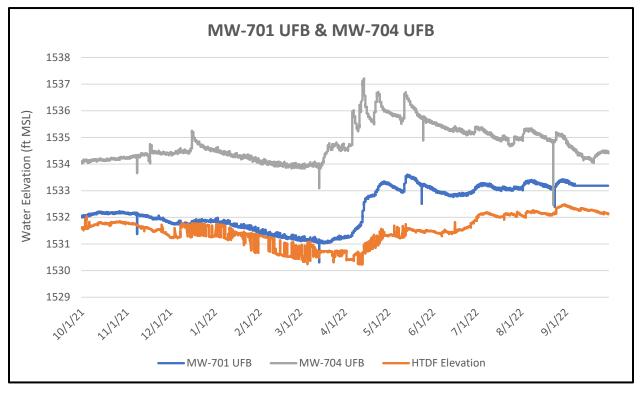

Note: The large drops in water level are associated with the location being pumped down in preparation of sampling.

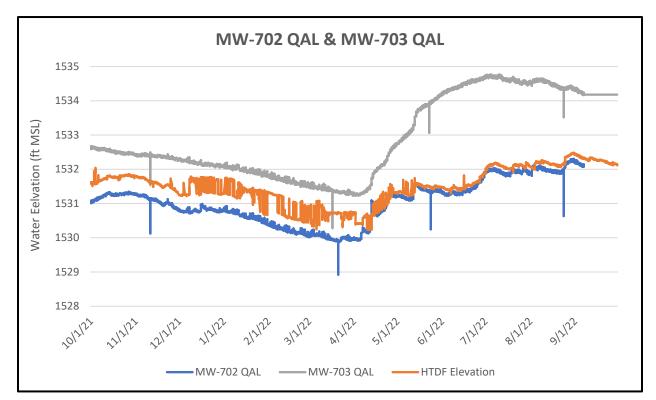

Note: The large drops in water level are associated with the location being pumped down in preparation of sampling.

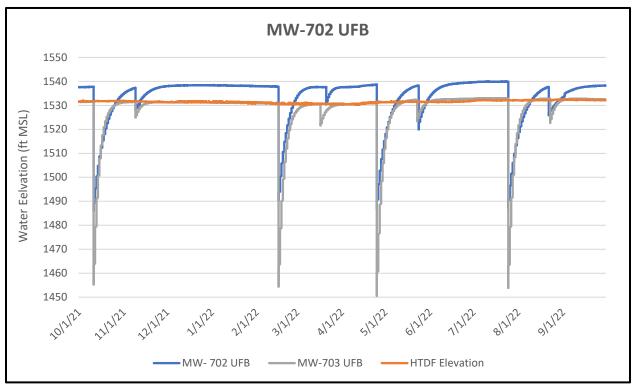

Note: The large drops in water level are associated with the location being pumped down in preparation of sampling.


Note: The large drops in water level are associated with the location being pumped down in preparation of sampling.


Note: The large drops in water level are associated with the location being pumped down in preparation of sampling.


Note: The large drops in water level are associated with the location being pumped down in preparation of sampling.


Note: The large drops in water level are associated with the location being pumped down in preparation of sampling. Note: GW elevation data from 05-24-22 through 09-07-22 was unavailable due to equipment malfunction.


Note: The large drops in water level are associated with the location being pumped down in preparation of sampling.

Note: The large drops in water level are associated with the location being pumped down in preparation of sampling.

Note: The large drops in water level are associated with the location being pumped down in preparation of sampling. Note: GW elevation data from 09-07-22 through 11-22-22 was unavailable due to equipment malfunction.

Note: The large drops in water level are associated with the location being pumped down in preparation of sampling

Appendix M

Humboldt Mill

Cut-off Wall Tabular Summary

2022 Cut-off Wall Monitoring Well Tabular Summary

			Groundwater		
Monitoring Well	Location	Quarter	Level (ft MSL)	Commentary	Sulfate mg/L
		Q1	1530.73		340
HTDF		Q2	1531.56	ifate measured at approx. 1500 ft MSL.	300
		Q3	1532.14		360
		Q4	1531.70		320
HW-1L		Q1	1444.67	Sulfate concentrations are lower in this well than in the HTDF.	32
	Outside Cut-off Wall	Q2	1444.74		
		Q3	1444.70	*Following EGLE approval following the Q1 2022 sampling event, this well is only sampled once per year in Q3.	35
		Q4	1507.42		*
		Q1	1472.82	ulfate concentrations are similar to other wells outside of the cut off wall, and are lower than concentrations within the HTDF.	66
HW-1U LLA	Outside Cut-off Wall	Q2	1471.50		*
HW-IU LLA	Outside Cut-on Wall	Q3	1472.89	*Following EGLE approval following the Q1 2022 sampling event, this well is only sampled once per year in Q3.	66
		Q4	1472.18	ronowing Lott approval following the Q1 2022 sampling event, this wents only sampled once per year in Q3.	*
		Q1	1533.94		20
	Outside Cut-off Wall, Compared	Q2	1535.38		1.
HW-1U UFB	to HW-2	Q3	1535.28	Low or nondetect sulfate concentrations at this well do not correlate with those found in HW-2 demonstrating the effectiveness of the cut-off wall.	< 1.
		Q4	1535.16		4.
		Q1	1532.38		27
		Q2	1533.75		23
HW-2	Inside Cut-off Wall	Q3	1534.18	The sulfate in this well is lower than concentrations in the HTDF.	18
		Q4	1533.77		14
		Q1	1532.63		3.
	Outside Cut off Wall, Compared to HW-2	Q1 Q2	1532.03		2.
HW-8U		Q3	1534.56	Sulfate concentrations are much lower at this well then observed in the HTDF, showing the effectiveness of the cut off wall.	1.
		Q4	1534.41		2.
		Q1	1530.72		38
	Outside Cut off Wall, Compared	Q2		After the cut off wall was installed the head difference between HW-2 and HYG-1 increased by approximately 5 feet. A 2-3 foot head difference remains between the two wells indicating similar conditions with seasonal impacts.	37.
HYG-1	to HW-2	Q3			49
		Q4	1531.05		40.
		Q1	1531.05	Sulfate at this well has remained elevated indicating influence of water from the HTDF as predicted. The magnitude and changes in water level in	226
MW-701 QAL		Q2	1533.51		105
WW-701 QAL	Inside-Cut off Wall	Q3	1533.17	MW-701 QAL follow the magnitude and changes in water level of the HTDF as expected given it's close proximity to the HTDF and location south of the cut-off wall. It is likely we are also seeing elevations related to the 2019 sulfuric acid spill that occured in this area.	122
		Q4	1533.18	ne cut-on wan. It is likely we are also seeing elevations related to the 2019 summic acid spin that occured in this area.	95
		Q1	1531.34	Due to the sulfuric acid spill that occurred in 2019, sulfate concentrations in this well were significantly higher in 2019-2021 than those observed a the 1500 msl Level of the HTDF. In 2022, the sulfate levels in this well have lowered to values similar to other wells inside the cut-off wall.	128.
MW-701 UFB	Bedrock, Inside-Cut off Wall	Q2			91.
	Bedrock, Inside-Cut off Wall	Q3			75
		Q4	1533.00		67.
		Q1	1529.97	The sulfate in this well is lower than it is in the HTDF, but it is higher than the concentration occuring in its paired leachate monitoring well MW-703	51.
	Inside Cut-off Wall	Q2	1531.50	QAL (with exception of Q1 2022) This is expected given its close proximity to the HTDF and location south of the cut-off wall.	49
MW-702 QAL		Q3	1531.93		54
		-		*Diver discovered in failed state during 2022 Q4 monitoring event, replaced on 11/22/2022	
		Q4	*		52.
		Q1	1537.62		34
MW-702 UFB	Inside Cut-off Wall	Q2		The behavior of MW-702 UFB and MW-703 UFB (with exception of Q1 2022) have had no apparent changes for the years of facility operations,	33
		Q3		which show that the wall is behaving similarly to its performance in the past despite water level changes in the basin over the years.	34
MW-703 QAL		Q4	1537.51		31
	Outside Cut-off Wall	Q1	1531.36	$\frac{1}{74}$ but affective over the solution of the cut off wall and is similar to levels observed in other wells outside of the cut off wall. This show	178
		Q2	1533.74		21
		Q3	1534.47 1534.18	HTDF, indicating cut-off wall effectivness.	25
		Q4 Q1	1534.18 1530.49		21
		Q1 Q2	1530.49	The behavior of MW-702 UFB and MW-703 UFB (with exception of Q1 2022 which appears anomalous) have had no apparent changes for the years	46
MW-703 UFB	Outside Cut-off Wall	Q2 Q3	1531.83	2.73 of facility operations, which show that the wall is behaving similarly to its performance in the past despite water level changes in the basin over the 2.71 years	
		Q3 1532.7 Q4 1531.1			

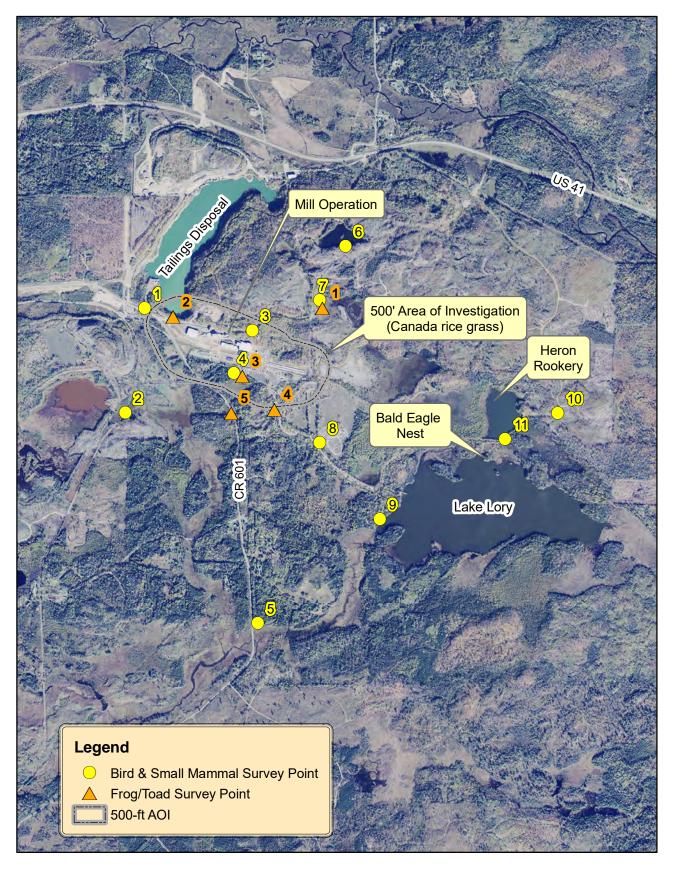
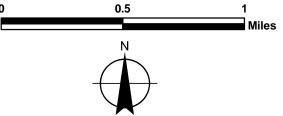
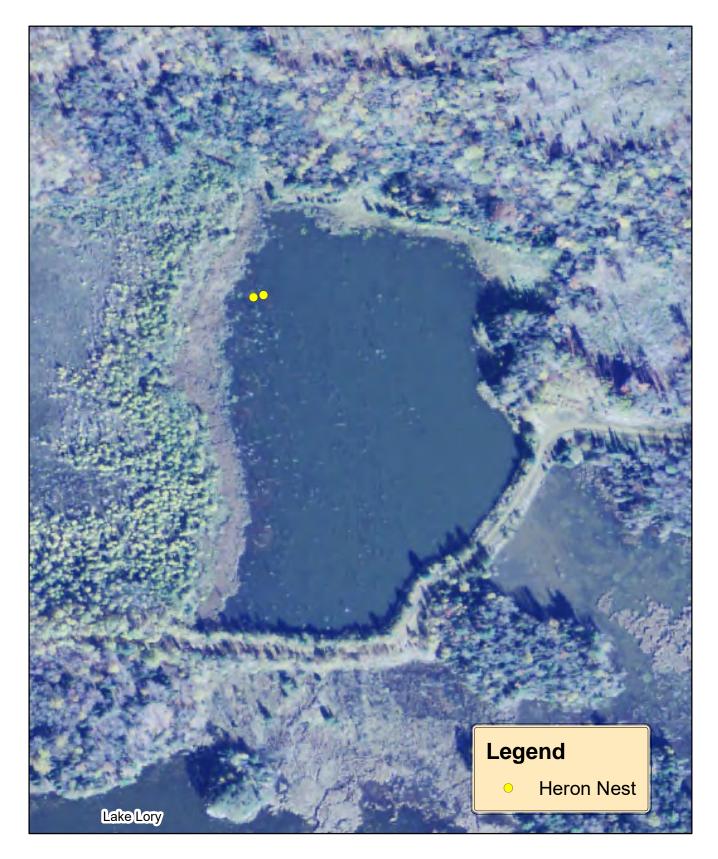
2022 Cut-off Wall Monitoring Well Tabular Summary

			Groundwater		
Monitoring Well	Location	Quarter	Level (ft MSL)	Commentary	Sulfate mg/L
	Outside Cut-off Wall	Q1	1532.56		134.0
MW-703 LLA		Q2	1534.29	Sulfate concentrations in this well are lower than in the HTDF which evidences the cut-off wall effectiveness. The elevation observed in Q1 2022	32.5
WWW-703 LLA		Q3	1534.79	ppears anomalous.	
		Q4	1534.30		
		Q1	1529.71	Sulfate concentrations in this well are lower than in the HTDF which evidences the cut-off wall effectiveness. The elevation observed in Q1 2022 appears anomalous.	236.0
MW-703 DBA	Outside Cut-off Wall	Q2	1531.22		38.4
IVIV-705 DBA		Q3	1531.69		39.2
		Q4	1531.29		35.0
	Leachate Monitoring Well for MW-701 QAL Outside Cut-off Wall	Q1	1533.38	Sulfate levels in this well do not correlate with those found in its leachate monitoring pair, indicating overall that water quality of the HTDF is not communicating with this well. Water quality in MW-704 QAL may be locally under the influence of discharges of Escanaba River irrigation water to Outfall 003 at Wetland EE. The water level in MW-704 QAL was approximately 2-3 feet higher than the elevation of the HTDF throughout 2022,	14.3
MW-704 QAL		Q2	1535.91		21.2
WW-704 QAL		Q3	1534.67		21.6
		Q4	1534.36	indicating the cut-off wall was effective at limiting communication between wells.	
	Leachate Monitoring Well for MW-701 QAL Outside Cut-off Wall	Q1	1533.90	The magnitude and changes in water level in MW-704 UFB vary from levels observed in the HTDF. Sulfate levels in this well do not correlate with those found in its leachate monitoring pair MW-701 UFB, and are also lower than concentrations at the 1500 msl level of the HTDF, indicating overall that water quality of the HTDF is not communicating with this well	15.1
		Q2	1536.41		4.0
MW-704 UFB		Q3	1535.03		4.0
		Q4	1534.98		4.7
	Outside Cut-off Wall	Q1	1530.38	Sulfate concentrations in this well are significantly lower than in the HTDF which evidences the cut-off wall effectiveness.	10.5
		Q2	1533.63		10.4
MW-704 LLA		Q3	1532.06		7.8
		Q4	1531.94		7.7
MW-704 DBA	Outside Cut-off Wall	Q1	1515.56	15.34 15.08	< 1.0
		Q2	1515.34		1.5
		Q3	1515.08		1.5
		Q4	1515.05		1.4

Appendix N

Humboldt Mill

Flora & Fauna Survey Location Maps

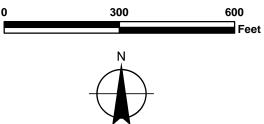
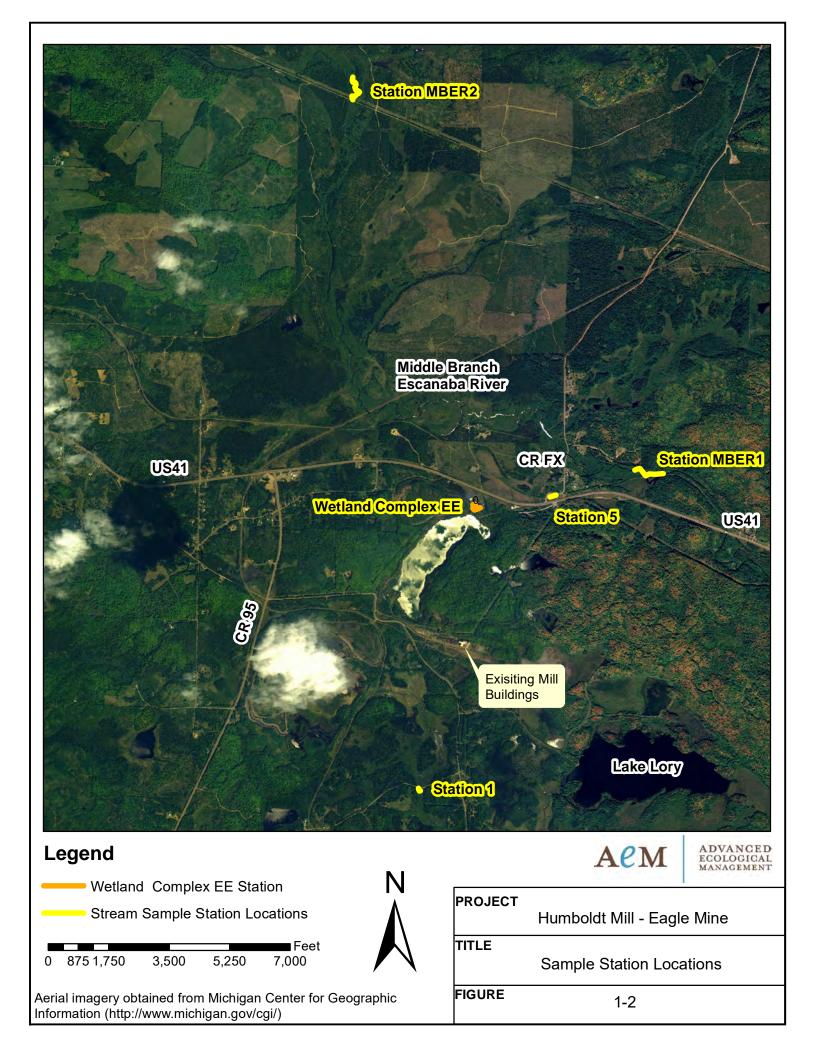
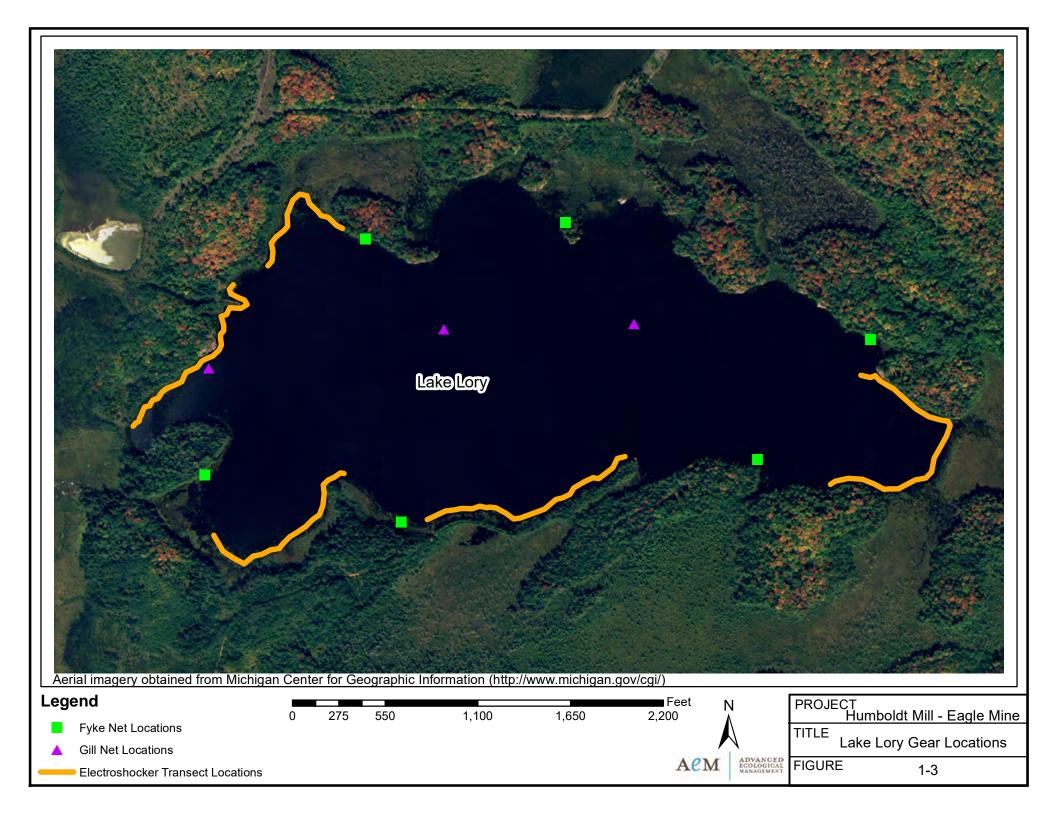

Figure 1-3. Biological Survey Areas

Figure 5-1. Great Blue Heron Rookery





Appendix O

Humboldt Mill

Aquatic Survey Location Maps

Appendix P

Humboldt Mill

Mill Contingency Plan

1. Contingency Plan – Humboldt Mill

This contingency plan addresses the requirements defined in R 425.205. This includes a qualitative assessment of the risk to public health and safety, or the environment (HSE risks) associated with potential accidents or failures involving activities at the Humboldt Mill. Engineering or operational controls to protect human health and the environment are discussed in Section 4 and Section 5 of this document. The focus of this contingency plan is on possible HSE risks and contingency measures. Possible HSE risks to on-site workers will be addressed by Eagle Mine through HSE procedures in accordance with Mine Safety and Health Administration (MSHA) requirements.

The Humboldt Mill involves processing ore, as well as storing and treating by-products of that process. The milling, storage, and treatment facilities have been designed, constructed, and are operated in a manner that is protective of the environment through the use of proven technologies and engineering practices.

1.1 Contingency Items

This contingency plan addresses the items listed below in this Section in accordance with R 425.205 (1)(a)(i) - (xii).

- Release or threat of release of toxic or acid-forming materials
- Storage, transportation, and handling of explosives
- Fuel storage and distribution
- Fires
- Wastewater collection and treatment system
- Air emissions
- Spills of hazardous substances
- Other natural risks defined in the EIA
- Power disruption, and
- Leaks from containment systems for stockpiles or disposal and storage facilities.

For each contingency item, a description of the risk is provided, followed by a qualitative assessment of the risk(s) to the environment or public health and safety. Next, the response measures to be taken in the event of an accident or failure are described.

1.1.1 Release of Toxic or Acid-Forming Materials

Potentially reactive materials generated as a result of processing operations include ore concentrate and tailings. Both materials have the potential to leach metals constituents when exposed to air and water. As described in the following sub-sections, handling, and temporary storage of both the ore concentrate and tailings have been carefully considered in the design of the Humboldt Mill to prevent the uncontrolled release of acid rock drainage (ARD).

1.1.1.1 Coarse Ore Storage Area (COSA)

The potential environmental risk associated with the COSA is the release of contact water to the environment via cracks in the floor areas or collection sumps. The COSA is a steel-sided building with a full roof that is used for the temporary storage of stockpiled coarse ore that has been transported from the mine and is awaiting crushing. The COSA has a concrete floor that is sloped to keep any water associated with the ore inside the facility. The lower level of the facility is equipped with an epoxy-lined sump and any water collected is pumped to the Humboldt Tailings Disposal Facility (HTDF) for eventual treatment by the water treatment plant.

A secondary potential environmental risk in the COSA is the release of acid-generating material via track out and fugitive emissions. Track out is managed by the housekeeping standard practices that have been established in the building.

Contingency planning for this facility includes timely repair of cracks in the floors and walls that could allow the release of material into the environment. An impermeable surface inspection plan has been developed and describes procedures for routine impermeable surface inspections, preventative and remedial actions as well as documentation procedures. Also, per Air Permit (No. 405-08), all overhead doors must be closed during loading or unloading of ore and a sweeping program is in place to minimize the generation of dust.

1.1.1.2 Concentrate Load-Out (CLO)

The potential environmental risk associated with the CLO is the release of acid-generating material via track-out and fugitive emissions. The CLO is a steel-sided building with a full roof that is used for the temporary storage of stockpiled nickel and copper concentrate prior to loading the material into railcars destined for customers. The CLO has concrete floors and does not contain any floor drains as water use is discouraged in this area.

Contingency planning for this facility includes timely repair of cracks in the floors and walls that could allow the release of material into the environment. An impermeable surface inspection plan has been developed and describes procedures for routine impermeable surface inspections, preventative and remedial actions as well as documentation procedures. Also, per Air Permit (No. 405-08), all overhead doors must be closed during loading operations, and a sweeping program in place to minimize the generation of dust and track out of material. Track out is also managed in accordance with procedures outlined in the facility's standard operating procedures and includes inspecting and removing any residual concentrate from the exterior of the railcars prior to leaving the facility.

1.1.1.3 Humboldt Tailings Disposal Facility (HTDF)

A potential contaminant release from the HTDF could be in the form of water that has elevated metal or salt concentrations that may impact surface water or groundwater quality. The HTDF is a former open pit mine that was allowed to fill with water. Process tailings are sub-aqueously disposed which is the industry best practice for materials that could be potentially acid generating. The anoxic environment minimizes the potential for the generation of ARD.

The HTDF was originally composed of bedrock walls on three sides and alluvial soils on the north end through which groundwater naturally transmitted to the adjacent wetland. A cut-off wall was installed in the alluvial soil to prevent the release of water from the HTDF into groundwater. Therefore, groundwater quality surrounding the HTDF should not be influenced by HTDF operations. Any water that leaves the HTDF passes through the water treatment plant prior to discharge into the environment. Surface water discharge from the HTDF will be treated through the water treatment plant prior to discharge to the Escanaba River and/or nearby wetland.

Groundwater seeps from the HTDF are not expected to occur due to the low permeability of the surrounding Precambrian geologic formation. Furthermore, groundwater and surface water quality and elevations/flow are routinely monitored following requirements of the Part 632 Mining and NPDES permits and will identify changes to surrounding water quality that would be indicative of groundwater release from the HTDF. Contingency planning from an unlikely groundwater release from the HTDF includes:

- Identify the nature and extent of the release,
- Implement additional monitoring to ascertain the extent of release,
- Develop a remedial action plan to bring the facility back into compliance,
- Implement a remedial action plan.

Specific details of the remedial action plan would be developed based on the nature of the release and in concert with agreements with the Michigan Department of Environment, Great Lakes, and Energy (EGLE).

Eagle will monitor water quality in the HTDF during operations and post-closure. The WTP and associated infrastructure will remain in place after tailings disposal has ceased until water quality meets applicable standards. If future monitoring indicates there are elevated metals in the HTDF that could impact surface water one of the following treatment options may be implemented:

- Continue the treatment of the HTDF water through the WTP until water quality conditions in the HTDF meet surface water standards; and/or
- Amend the HTDF with appropriate reagents to reduce elevated metal parameters in order to meet surface water standards.

Specific reagents and application rate(s) would depend on the elevated metal parameters of concern. Past phosphate seeding of HTDF by previous owners was effective for nickel concentration reduction.

1.1.1.4 Tailings Transport System

Tailings are transported to the HTDF via slurry contained within a double-cased HDPE pipe conveyance system. The pipe conveyance system consists of a 4-in diameter carrier pipe within an 8-in outer containment pipe. Two tailings lines are available for use, but only one is used at a time. In addition, the tailings lines are equipped with a leak detection system; any water released into the outer piping would drain to the shore vault and trigger an alarm, notifying operations of a potential system breach. The shore vault is also visually inspected twice per day (once per shift) by operators and the Environmental Department checks the tailings lines for signs of leakage once per week.

If a breach is identified, the slurry pumps will be shut down until the source of breach is identified and repaired. The contingency plan for moving tailings to the HTDF facility is to use the second set of tailings lines that are already in place. In the event both lines were down, they could either be pumped into a truck with a sealed cargo area or the tailings will be held within the plant thickener vessel until the pipeline is repaired.

1.1.2 Storage, Transportation and Handling of Chemicals

The potential risk associated with chemical use include surface and groundwater quality impacts. Chemicals are brought to the site by certified chemical haulers, meeting Michigan Department of Transportation (MDOT) transportation requirements. The chemicals are stored in secure locations within building(s) or outdoor bulk storage silos designed for that application. Transferring chemicals is conducted by qualified site personnel. Bulk granular products are conveyed pneumatically to the storage silos. Specific procedures for chemical storage and emergency response procedures are included in the facility's Pollution Incident Prevention Plan (PIPP).

Because chemicals will be stored in secure areas, the potential for release into the environment is very remote. If a breach of contaminant vessel does occur, the chemical will be contained within the secondary containment area. The spill or release will be immediately cleaned using the appropriate methods specified in the Safety Data Sheets (SDS). SDS forms are maintained on-site for all chemicals.

1.1.3 Fuel Storage and Distribution

There is currently one 3,000-gallon stationary bulk diesel tank located onsite. This tank is used to fuel mobile equipment onsite. A fuel provider refills the tank on an as-needed basis. The stationary tank is located on an asphalt surface where spills or leaks can be captured and absorbed.

In addition, equipment containing fuel includes a backup diesel generator (2,000-gallon capacity) located at the northeast corner of the concentrate loadout facility, a backup diesel generator (1,335 gallons capacity) located by the shore vault, and two refueling tanks located in the beds of pickup trucks (38 and 96-gallon capacities).

In general, fuel spills and leaks will be minimized by the following measures:

- A Spill Prevention Control and Countermeasures Plan (SPCC) has been written and implemented.
- Personnel are trained and responsible for handling fuel using proper procedures and emergency response.
- Regular equipment inspections and documentation of findings.
- Emergency response equipment is staged to quickly respond to unanticipated spills or leaks.

Specific procedures have been prepared as part of the project's SPCC Plan. In addition, a PIPP has been prepared that addresses the potential for spills of fuels and other polluting materials such as water treatment chemicals and mill processing reagents.

Diesel fuel and propane (fuels) are transported to the Humboldt Mill by tanker truck from local distributors. The probability of an accidental release during transportation will be dependent on the location of the supplier(s) and the frequency of shipment. A fuel release resulting from a vehicular accident during transportation is a low-probability event. Transport of fuel in tanker trucks does not pose an unusual risk to the region since tanker trucks currently travel to the region on a regular basis to deliver fuels to gasoline stations located in the communities surrounding the Humboldt Mill.

Three potential release events associated with the surface-stored fuels are a bulk tank failure, mishandling/leaking hoses, and a construction/reclamation phase release.

<u>Bulk Tank Failure</u> – A release may result from a failure of the stationary diesel tank. This type of release is a low probability as it is a double-walled (i.e., secondary containment) fireproof tank that is inspected for signs of leakage or potential failure daily prior to use. In addition, the tank is located and used in an area where asphalt is present, and any spills would be absorbed or contained rather than directed offsite or unprotected location. A spill response trailer is located onsite and contains spill containment and clean-up equipment in the event of a spill. Eagle also has a spill response contractor on call to immediately respond to situations that cannot be handled by onsite personnel.

<u>Mishandling/Leaking Hoses</u> - A release might result from leaking hoses or valves, or from operator mishandling. This type of release is likely to be small in volume and is a low-probability event given that operators will be trained to manage these types of potential releases. Mitigation measures include fueling on an asphalt surface and using secondary containment under connection/fill points. In addition, these small spills will be cleaned up using on-site spill response equipment such as absorbent materials and/or by removing impacted soils.

<u>Construction/Reclamation Phase Release</u> - A major fuel spill during the construction or reclamation phases of a project could occur from a mobile storage tank failure or mishandling fuels. This type of release is also a low probability event given that operators will be trained to manage these types of potential releases and all tanks are required to have secondary containment. As with mishandling or leaking hoses, these small spills will be cleaned up by using on-site spill response equipment such as absorbent materials and/or removing impacted soils.

Absorptive materials may be used initially to contain a potential spill. After the initial response, soil impacted with residual fuel would be addressed. Remedial efforts could include, if necessary, the removal of soil to preclude the migration of fuel to groundwater or surface water. The project's PIPP and SPCC plans address fueling operations, fuel spill prevention measures, inspections, training, security, spill reporting, and equipment needs. In addition, standard operating procedures have been developed which cover fueling operations and spill response activities. All responses to a fuel spill, both large and small, will follow the guidelines dictated by the spill response plan and be reported internally. The tanks will be inspected regularly, and records of spills will be kept and reported to EGLE or other agencies as required.

Contingency plans for responding to fuel spills from tanker trucks are required of all mobile transport owners as dictated by MDOT regulation 49 CFR 130. These response plans require appropriate personnel training and the development of procedures for timely response to spills. The plan must identify who will

respond to the spill and describe the response actions to potential releases, including the complete loss of cargo. The plan must also list the names and addresses of regulatory contacts to be notified in the event of a release.

1.1.4 Fires

Surface fires can be started by a variety of causes including vehicular incidents, accidental ignition of fuels or flammable chemical reagents, and lightning strikes. Smoking is only allowed in designated areas on the site. Contingency measures include having the required safety equipment, appropriate personnel training and standard operating procedures. In addition, muster points have been established and all employees and visitors are trained on their location. Given these measures, uncontrolled or large surface fires are low-probability events with negligible risk.

Because the Humboldt Mill is situated in a forested region, forest fires started off-site could potentially impact the mill site. The cleared area in the vicinity of the surface facilities serves as a fire break to protect surface facilities. Contingency measures discussed below can be implemented in the event of an off-site forest fire.

In order to minimize the risk of a fire on-site, stringent safety standards are being followed. All vehicles/equipment are required to be equipped with fire extinguishers and personnel is trained in their use. Fire extinguishers are also located near each building exit door and personnel is required to complete a "hot work" permit for tasks involving open flames, heat, and/or sparks. A network of fire hydrants is installed throughout the site and the Mill Emergency Response Team is trained in defensive firefighting techniques to help stop the spread of a fire if it was safe to do so.

On-site firefighting equipment includes:

- An above-ground water storage tank and distribution system for fire suppression
- Five stocked and maintained fire equipment cabinets
- 29 occupant-use fire hose stations throughout the facility
- Dry chemical fire extinguishers located throughout the site
- FireWorks system with multiple heat and smoke detectors that notifies site Security immediately of any fire.

In addition, a Wildfire Response Guideline has been developed in conjunction with Michigan DNR Fire Division to ensure the best possible response to a wildland fire.

Contingency planning for managing materials that oxidize includes training equipment operators on the material characteristics. The temperature of the material is routinely measured and any material exhibiting signs of self-heating is immediately compacted or exposed and spread out depending on the situation. Both methods are proven to mitigate the risks associated with self-heating.

1.1.5 Wastewater Collection and Treatment

The major source of water from the facility requiring treatment includes process water and tailings, groundwater infiltration into the HTDF, precipitation, and storm water runoff. The HTDF is sized to provide wastewater storage and equalization capacity. Water from the HTDF is conveyed to the WTP which is composed of several unit processes, including: oxidation, metals precipitation, ultra-filtration, and reverse-osmosis filtration. The final product water is discharged to the Escanaba River and/or nearby wetland area. This discharge is authorized by the State of Michigan under a National Pollutant Discharge Elimination System (NPDES) permit (MI0058649).

The water treatment system is designed to handle various process upset conditions such as power disruption (Section 1.1.9) or maintenance of the various process units. The effluent is continually monitored for key indicator parameters to verify the proper operation. Effluent that does not meet treatment requirements is pumped back to the HTDF for re-treatment. The water level of the HTDF is

maintained to provide ample storage capacity that would allow for sufficient time to correct a process upset condition. Potential hazards and chemical reagents associated with the WTP are discussed in Section 1.1.7.

1.1.6 Air Emissions

The operations and reclamation phases of the project will be performed in a manner to minimize the potential for accidents or failures that could result in off-site air quality impacts. All phases of the project will incorporate a combination of operating and work practices, maintenance practices, emission controls and engineering design to minimize potential accidents or failures. Below is a description of identified areas of risk and associated contingency measures that may be required. As part of a comprehensive environmental control plan, these contingency measures will assist in minimizing air impacts to the surrounding area.

1.1.6.1 Air Emissions during Operations

During the operation of the mill, potential emissions from the facility will be controlled as detailed in the Mill's current Michigan Air Use Permit (No. 405-08). These controls include the use of building enclosures for material handling, installation of dust collection or suppression systems to control dust during ore crushing and transfer operations, and following prescribed preventive maintenance procedures for the facility. Tailings generated during the milling process are transported to the HTDF via slurry and therefore will not generate particulate matter. Ore brought from off-site is transported in covered trucks to minimize dust emissions. Below is a more detailed discussion of potential airborne risks associated with proposed operations at the facility.

To minimize dust emissions from the COSA and concentrate load-out building, these areas are fully enclosed. Ore transported from the mine site may only be dumped in the COSA when the doors are closed to minimize dust emissions from the building. A sweeping and housekeeping program is in place in the COSA and throughout the crushing circuit including the primary crusher, rock breaker, and conveyor transfer points located in the conveyor transfer station and mill building.

Fabric filter baghouses are used throughout the facility to minimize emissions of dust. Bag houses are located in the Secondary Crusher building and the Fine Ore Bins. Two insertable filter systems are installed in the transfer building. Baghouse malfunction is a possibility and can include a bag break or offset and excessive dust loading. These potential malfunctions are addressed in the malfunction prevention and abatement plan. The plan includes regular inspections and maintenance activities of dust collection and suppression systems which are accomplished by monitoring the pressure drop across the bags, monitoring gas flow, and visual observations of stack emissions to assess opacity per permit conditions. In the event the monitoring program indicates a malfunction, a thorough investigation of the cause will occur. If necessary, ore processing operations will be shut down until the problem is corrected.

During facility operations, Eagle Mine will utilize certain pieces of mobile equipment to move material about the site. Equipment includes front-end loaders, product haul trucks, and miscellaneous delivery trucks. Although the movement of most vehicles across the site is on asphalt surfaces, a comprehensive on-site sweeping and watering program has been developed to control potential fugitive sources of dust. If excessive dust emissions should occur, the facility will take appropriate corrective action, which may include intensifying and/or adjusting the sweeping/watering program to properly address the problem.

1.1.6.2 Air Emissions during Reclamation

Once milling operations are completed at the site, reclamation will commence in accordance with R425.204. Similar to construction activities, there is a moderate risk that fugitive dust emissions could be released during certain re-vegetation activities and during the temporary storage of materials in stockpiles. Similar to controls employed during the construction phase, areas that are reclaimed will be re-vegetated to stabilize soil and reduce dust emissions. If severe wind or an excessive rain event reduces the effectiveness of these protective measures, appropriate action will take place as soon as possible to restore

vegetated areas to their previous effectiveness and replace covers as necessary.

To the extent necessary, areas being reclaimed will be kept in a wet state by continuing the watering program. It is anticipated this program should minimize the possibility of excessive dust associated with mobile equipment. In the event fugitive dust is identified as an issue, corrective action will determine the cause of the problem and appropriate action will occur.

1.1.7 Spills of Hazardous Substances

Chemical reagents onsite are primarily used for the ore flotation and water treatment plant processes. Table 1.1.7 includes a list of reagents reported under the SARA Tier II Emergency and Hazardous Chemical Inventory that are being used onsite along with the approximate storage volumes and storage location. The storage volume is the calculated volume of chemical within each solution based on percentage.

ltem No.	Chemical Name	Trade Name	CAS No.	Storage Volume s	Storage Areas
1	Hydrochloric Acid/Hydrogen Chloride 31.5%	Muriatic Acid	7647-01-0	900 gal	WTP chemical storage
2	Sodium Bisulfite 40%	Sodium Bisulfite	7631-90-5	900 gal	WTP chemical storage
3	Sodium Hydroxide 25%	Sodium Hydroxide/ Caustic Soda	1310-73-2	900 gal	WTP chemical storage
4	Sodium Hypochlorite 12.5%	Chlorine/Bleach	7681-52-9	900 gal	WTP chemical storage
5	1) Ferric Chloride 35% 2) Hydrochloric Acid 1%	Ferric Chloride	1) 7705-08-0 2) 7647-01-0	7,500 gal	WTP Reactor Area (West of WTP)
6	1) Sodium Hydroxide 50% 2) Sodium Chloride 5%	Sodium Hydroxide/ Caustic Soda	1) 1310-73-2 2) 7647-14-5	8,400 gal	WTP chemical storage
7	Sulfuric Acid 93.19%	Sulfuric Acid, 66 Deg	7664-93-9	7,600 gal	WTP sulfuric bulk tank
8	Aluminum chloride hydroxide sulphate	Nalco 8136/PAC	39290-78-3	2,200 gal	WTP chemical storage
9	1) Sodium Chloride 2) Sodium Sulphide, 3) Sodium Hydroxide	Nalmet 1689	1) 7647-14-5 2) 1313-82-2 3) 1310-73-2	550 gal	WTP chemical storage
10	Hydrotreated Light Distillate	Nalclear 7766 Plus/Flocculant	64742-47-8	110 gal	WTP chemical storage
11	Hydrogen Peroxide 50%	Hydrogen Peroxide	7722-84-1	7,000 gal	WTP reactor Area
12	Low pH RO cleaner	Citric Acid	77-92-9	4,000 lbs	WTP chemical storage
13	High pH RO cleaner	Hydrex 4501	Unknown	1,600 lbs	WTP chemical storage

Table 1.1.7 Chemical Reagents Used at the Water Treatment Plant & Mill Building

-					
14	PERMACLEAN-56	Biocide PC-56	10377-60-3 26172-55-4 2682-20-4	550 gal	WTP chemical storage
15	Sodium carboxymethyl cellulose	CMC/Finnfix 300	9004-32-4	20 tons	Reagent storage area
16	Calcium Hydroxide	Hydrated Lime	1305-62-0	29 tons	Lime silo
17	Optimer 83949	Flocculant	Unknown	2 tons	Reagent storage area
18	Methyl isobutyl carbinol (MIBC)	MIBC/Frother	108-11-2	2.2 tons	MIBC tank
19	Sodium isopropyl xanthane (SIPX)	SIPX	140-93-2	15 tons	Reagent storage area
20	Sodium carbonate	Soda Ash	497-19-8	54 tons	Soda ash silo
21	Carbon Dioxide	Carbon Dioxide/CO ₂	124-38-9	6,000 lbs	CO ₂ Tank
22	Graymont High Calcium Hydrated Lime	Hydrated Lime	1305-62-0 14808-60-7	25 tons	WTP lime storage connex
23	Depositrol BL5400	Anti-Scalant	2809-21-4 13598-36-2	3,150 lbs	Concentrator Building – Pump Alley

Chemical storage and delivery systems follow current standards that are designed to prevent and contain spills. All areas in which chemicals are used or stored have been designed and constructed with environmental protection in mind. This includes the development of secondary containment areas for liquids. The secondary containment area is constructed of materials that are compatible with and impervious to the liquids that are being stored. A release in the WTP or concentrator building from the associated piping would be contained within the plant area, neutralized, and sent to the HTDF for disposal. Absorbent materials are available to contain acid or caustic spills. Eagle Mine has an emergency response contractor on call to immediately respond to environmental incidents, assist with clean-up efforts, and conduct environmental monitoring associated with any spills.

Spill containment measures for chemical storage and handling will reduce the risk of a spill from impacting the environment. Due to the low volatility of these chemicals, fugitive emissions from the WTP or concentrator building to the atmosphere during a spill incident are likely to be negligible. Off-site exposures are not expected, and the management and handling of WTP and processing reagents will not pose a significant risk to human health or the environment.

1.1.8 Other Natural Risks

<u>Earthquakes</u> – The Upper Peninsula of Michigan is in a seismically stable area. The USGS seismic impact zone maps show the maximum horizontal acceleration to be less than 0.1 g in 250 years at 90% probability. Therefore, the mill site is not located in a seismic impact zone and the risk of an earthquake is minimal. Therefore, no contingency measures are discussed in this section.

<u>Floods</u> - High precipitation events have been discussed previously in the section that describes the HTDF. High precipitation could also lead to the failure of erosion control structures. The impacts of such an event would be localized erosion. Contingency measures to control erosion include sandbag barriers and temporary diversion berms. Long-term or off-site impacts would not be expected. Failed erosion control structures would be repaired or rebuilt. Impacts from high precipitation are reversible and off-site impacts are not expected to occur. Given the considerable planning and engineering efforts to manage high precipitation events, the risk posed by high precipitation is considered negligible.

<u>Severe Thunderstorms or Tornadoes</u> – Severe thunderstorms or tornadoes are addressed in the emergency procedures developed for the Eagle Mine and Humboldt Mill. Storm shelters have been designated and evacuation procedures practiced on an annual basis.

<u>Blizzard</u> – The mill site is designed to accommodate the winter conditions anticipated in the Upper Peninsula of Michigan. The Marquette County Road Commission is responsible for maintaining roadways near the Humboldt Mill. If road conditions deteriorate beyond the capability of the county or township maintenance equipment, employees can be housed onsite in the administrative offices and conference rooms as needed.

Forest Fires – Forest fires were discussed in Section 1.1.4.

1.1.9 Power Disruption

Electrical power for the Humboldt Mill is provided by two utility power companies: Wisconsin Electric (WE) Energies and Upper Peninsula Power Company (UPPCO). The mill facility and production buildings are presently served by a 69 kV overhead electric feeder to an on-site UPPCO electrical substation. The substation supplies three underground 13.8 kV feeders: two to our main mill switchgear and one to our fire water system.

The production support buildings and Water Treatment Plant infrastructure for the mill are fed from a WE Energies 25 kV overhead line. These buildings include the Security Building, Administration Building, Mill Services Building, Water Treatment Plant Building which includes Water Treatment Plant Intake Pump Building.

In the event that power is disrupted, backup generators are installed to ensure mill critical loads remain energized. The buildings where "critical loads" have been identified and generators have been installed is the Concentrator Building, which powers essential loads in the Concentrator and Concentrate Load Out Building, Coarse Ore Storage Area, Tailings Vault/Reclaim Pump Structure, Administration Building, Mill Services Building, Security Building and Water Treatment Plant.

In the event the WTP would need to be temporarily shut down during power disruptions, the water level of the HTDF is maintained at a level that provides enough capacity to store water for an extended period of time if necessary.

1.2 Emergency Procedures

This section includes the emergency notification procedures and contacts for the Humboldt Mill Site. Per R 425.205(2), a copy of this contingency plan will be provided to each emergency management coordinator having jurisdiction over the affected area (i.e., Marquette County).

<u>Emergency Notification Procedures</u> – An emergency will be defined as any unusual event or circumstance that endangers life, health, property, or the environment. If an incident were to occur, all employees are instructed to contact Security via radio or phone. Security then makes the proper notifications to the facility managers and activates the Eagle Mine Emergency Response Guideline as needed. If personnel on site need to be notified of such an event an emergency toned broadcast via radio and all-call speakers will be made with instructions.

Eagle Mine has adopted an emergency response structure that allows key individuals to take immediate responsibility and control of the situation and ensures appropriate public authorities, safety agencies and the general public are notified, depending on the nature of the emergency. A brief description of the key individuals is as follows:

<u>Health & Safety Officer</u>: The facility H&S manager and H&S staff are responsible for monitoring activities in response to any emergencies. During an emergency, H&S representatives will manage special situations that expose responders to hazards, coordinate emergency response personnel, mine rescue teams, fire response, and ensure relevant emergency equipment is available for emergency service. This individual will also ensure appropriate personnel are made available to respond to the situation.

- <u>Environmental Officer</u>: The facility environmental manager will be responsible for managing any environmental aspects of an emergency situation. This individual will coordinate with personnel to ensure environmental impact is minimized, determine the type of response that is needed and act as a liaison between environmental agencies and mine site personnel.
- <u>Public Relations Officer</u>: The facility external relations manager will be responsible for managing all contacts with the public and will coordinate with the safety and environmental officers to provide appropriate information to the general public.

In addition to the emergency response structure cited above, Eagle Mine has a Crisis Management Team (CMT) and Plan developed to manage situations that may result in multiple injuries, loss of life, environmental damage, property or asset loss, or business interruption. If a situation is deemed a "crisis" the CMT immediately convenes to actively manage the situation. The CMT meets on a quarterly basis to review and practice plan implementation and annually a third party develops a desktop exercise to challenge and ensure the preparedness of the CMT. The following is a description of the core members and their roles:

Core Members	Role		
Team Leader	Responsible for strategy and decision making by the		
	CMT during a crisis and maintaining a strategic		
	overview.		
Coordinator	Ensures a plan is followed and all		
	logistical/administrative support required is provided.		
Administrator	Records key decisions and actions and provides		
	appropriate administrative supports to the CMT.		
Information Lead	Gathers, shares, and updates facts on a regular basis.		
Emergency Services and Security	Liaises with external response agencies and oversees		
	requests for resources. Maintains a link between the		
	ERT and CMT and oversees and necessary evacuations.		
Communications Coordinator	Develops and implements the communications plan		
	with support from an external resource.		
Spokesperson	Conducts media interviews and stakeholder briefings.		

Crisis Management Team – Core Members and Roles

<u>Evacuation Procedures</u> – While the immediate surrounding area is sparsely populated, if it is necessary to evacuate the general public, this activity will be handled in conjunction with emergency response agencies. The Public Relations Officer will be responsible for this notification, working with other site personnel, including the H&S and environmental officers.

In the event evacuation of mill personnel is required, Eagle Mine has developed emergency response procedures for all surface facilities. All evacuation procedures were developed in compliance with MSHA regulations. In addition, the Mill Emergency Response Team (ERT) was formed to assist in emergency response situations should they arise. This team is not required by MSHA but was established to help ensure the safety of employees while at work. The focus of the team is to act as the liaison with first responders as well as the Eagle CMT, providing assistance where needed as they are considered the site experts on our equipment, locations, and emergency procedures. ERT training occurs once per month. Training focuses on fire system familiarization, patient packaging/stokes basket use, EMS support and assistance, emergency equipment familiarization and inventory, and rope and knot work.

In addition to the ERT, security personnel are EMTs and paramedics who are trained in accordance with state and federal regulations. This allows for immediate response to medical emergency situations.

Emergency Equipment – Emergency equipment includes but is not limited to the following:

- ABC Rechargeable fire extinguishers
- Fire cabinets located throughout the site containing hose, nozzles, hydrant wrenches, etc.
- Radios
- First aid kits, stretchers, backboards, and appropriate medical supplies
- Gas detection monitors that detect five gases and LEL
- High angle rescue ropes
- Self-Contained Breathing Apparatus (SCBA)
- Spill Kits (hydrocarbon and chemical)
- Certified EMT's Basic and Paramedics are on site at all times to respond in the event of an emergency.
- A trained Emergency Response Team.

This equipment is located throughout the surface facilities. Fire extinguishers are located at appropriate locations throughout the facility, in accordance with MSHA requirements. Surface facility personnel are also equipped with radios for general communications and emergencies. Other emergency response equipment is located at appropriate and convenient locations for easy access for response personnel.

<u>Emergency Telephone Numbers</u> – Emergency telephone numbers are included for site and emergency response agencies, as required by R 425.205(1)(c). They are as follows:

- Mill Security: (906) 339-7017
- Local Ambulance Services: UP Health Systems Bell. Contact Security at Extension 7017, or by radio using the Emergency Channel, or by dialing 911.
- Hospitals: Marquette General Hospital (906) 225-3560

Bell Hospital – (906) 485-2200

- Local Fire Departments: Humboldt Township, Ishpeming Township 911
- Local Police: Marquette County Central Dispatch 911

Marquette County Sheriff Department - (906) 225-8435

Michigan State Police – (906) 475-9922

- TriMedia 24-hr emergency spill response: (906) 360-1545
- EGLE Marquette Office: (906) 228-4853
- Michigan Pollution Emergency Alerting System: (800) 292-4706
- Federal Agencies: EPA Region 5 Environmental Hotline: (800) 621-8431

EPA National Response Center: (800) 424-8802

MSHA North Central District: (218) 720-5448

- MDNR Marquette Field Office: (906) 228-6561
- Humboldt Township Supervisor: (906) 339-4477

1.3 Testing of Contingency Plan

During the course of each year, the facility will test the effectiveness of the Contingency Plan. Conducting an effective test will be comprised of two components. The first component will include participation in adequate training programs on emergency response procedures for those individuals that will be involved in responding to emergencies and the second component is the completion of a mock field or desktop exercise. Training will include the participation of the Safety Officer, Environmental Officer, Public Relations Officer, and other individuals designated to respond to emergencies including the Mill ERT. Individuals will receive appropriate training and information with respect to their specific roles, including emergency response procedures and the use of applicable emergency response equipment.

The second component of an effective Contingency Plan is to conduct desktop exercises or mock field tests. At least one desktop exercise or mock field test will be performed each year which will test the emergency response measures of the contingency plan and crisis management plan in place at Eagle Mine. The Safety Officer will work with the Environmental Officer and Emergency Response Coordinator to first define the situation that will be tested. The types of test situations may include responding to a release of a hazardous substance, fire, or natural disaster such as a tornado. A list of objectives will be developed for planning and evaluating each identified test situation. Date and time will then be established to carry out the test. Local emergency response officials may be involved, depending on the type of situation selected.

Once the test is completed, members of the crisis management team and emergency response team will evaluate the effectiveness of the response and make recommendations to improve the system. These recommendations will then be incorporated into a revision of the facility Contingency Plan and Crisis Management Plan.

Appendix Q

Humboldt Mill

Organizational Chart

 Eagle Mine

 4547 County Road 601

 Champion, MI 49814, USA

 Phone:
 (906) 339-7000

 Fax:
 (906) 339-7005

 www.eaglemine.com

Organizational Information

Eagle Mine LLC

January 05, 2023

Registered Address:	

Eagle Mine, LLC 1209 Orange Street Wilmington, DE 19801 **Business Address:**

Eagle Mine, LLC 4547 County Road 601 Champion, MI 49814

Board of Directors

Darby Stacey

4547 County Road 601 Champion, MI 49814

Teitur Poulsen

4547 County Road 601 Champion, MI 49814

Scott Manninen, CFO

4547 County Road 601 Champion, MI 49814

 Eagle Mine

 4547 County Road 601

 Champion, MI 49814, USA

 Phone:
 (906) 339-7000

 Fax:
 (906) 339-7005

 www.eaglemine.com

Officers

Theresa Murakami	Treasurer	4547 County Road 601 Champion, MI 49814
Annie Laurenson	Secretary	4547 County Road 601 Champion, MI 49814
Darby Stacey	President/Managing Director	4547 County Road 601 Champion, MI 49814
Scott Manninen	CFO	4547 County Road 601 Champion, MI 49814